Abstract
Human gaze behavior is not the only important aspect about eye tracking. The eyelids reveal additional important information; such as fatigue as well as the pupil size holds indications of the workload. The current state-of-the-art datasets focus on challenges in pupil center detection, whereas other aspects, such as the lid closure and pupil size, are neglected. Therefore, we propose a fully convolutional neural network for pupil and eyelid segmentation as well as eyelid landmark and pupil ellipsis regression. The network is jointly trained using the Log loss for segmentation and L1 loss for landmark and ellipsis regression. The application of the proposed network is the offline processing and creation of datasets. Which can be used to train resource-saving and real-time machine learning algorithms such as random forests. In addition, we will provide the worlds largest eye images dataset with more than 500,000 images DOWNLOAD.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adam, M., Rossant, F., Amiel, F., Mikovikova, B., Ea, T.: Eyelid localization for iris identification. Radioengineering 17(4), 82–85 (2008)
Anas, E.R., Henríquez, P., Matuszewski, B.J.: Online eye status detection in the wild with convolutional neural networks. In: VISIGRAPP (6: VISAPP), pp. 88–95 (2017)
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)
Benitezy, J.T.: Eye-tracking and optokinetic tests: diagnostic significance in peripheral and central vestibular disorders. Laryngoscope 80(6), 834–848 (1970)
Boraston, Z., Blakemore, S.J.: The application of eye-tracking technology in the study of autism. J. Physiol. 581(3), 893–898 (2007)
Braunagel, C., Rosenstiel, W., Kasneci, E.: Ready for take-over? A new driver assistance system for an automated classification of driver take-over readiness. IEEE Intell. Transp. Syst. Mag. 9(4), 10–22 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32
Daugman, J.: How Iris recognition works. In: The Essential Guide to Image Processing, pp. 715–739. Elsevier (2009)
Dong, W., Qu, P.: Eye state classification based on multi-feature fusion. In: Chinese Control and Decision Conference, CCDC 2009, pp. 231–234. IEEE (2009)
Duchowski, A.T.: A breadth-first survey of eye-tracking applications. Behav. Res. Methods Instrum. Comput. 34(4), 455–470 (2002)
Duchowski, A.T., Shivashankaraiah, V., Rawls, T., Gramopadhye, A.K., Melloy, B.J., Kanki, B.: Binocular eye tracking in virtual reality for inspection training. In: Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, pp. 89–96. ACM (2000)
Eivazi, S., Bednarik, R., Leinonen, V., von und zu Fraunberg, M., Jääskeläinen, J.E.: Embedding an eye tracker into a surgical microscope: requirements, design, and implementation. IEEE Sens. J. 16(7), 2070–2078 (2016)
Eivazi, S., Bednarik, R., Tukiainen, M., von und zu Fraunberg, M., Leinonen, V., Jääskeläinen, J.E.: Gaze behaviour of expert and novice microneurosurgeons differs during observations of tumor removal recordings. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 377–380. ACM (2012)
Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303 (2010)
Fuhl, W., Santini, T., Geisler, D., Kübler, T., Rosenstiel, W., Kasneci, E.: Eyes wide open? Eyelid location and eye aperture estimation for pervasive eye tracking in real-world scenarios. In: PETMEI, September 2016
Fuhl, W., Castner, N., Zhuang, L., Holzer, M., Rosenstiel, W., Kasneci, E.: MAM: transfer learning for fully automatic video annotation and specialized detector creation. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 375–388. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_23
Fuhl, W., Eivazi, S., Hosp, B., Eivazi, A., Rosenstiel, W., Kasneci, E.: BORE: boosted-oriented edge optimization for robust, real time remote pupil center detection. In: Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, p. 48. ACM (2018)
Fuhl, W., Geisler, D., Santini, T., Appel, T., Rosenstiel, W., Kasneci, E.: CBF: circular binary features for robust and real-time pupil center detection. In: Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, p. 8. ACM (2018)
Fuhl, W., Geisler, D., Santini, T., Rosenstiel, W., Kasneci, E.: Evaluation of state-of-the-art pupil detection algorithms on remote eye images. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1716–1725. ACM (2016)
Fuhl, W., Kübler, T., Sippel, K., Rosenstiel, W., Kasneci, E.: ExCuSe: robust pupil detection in real-world scenarios. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 39–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23192-1_4
Fuhl, W., Santini, T., Geisler, D., Kübler, T., Kasneci, E.: EyeLad: remote eye tracking image labeling tool. In: 12th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), February 2017
Fuhl, W., Santini, T., Kasneci, E.: Fast and robust eyelid outline and aperture detection in real-world scenarios. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1089–1097. IEEE (2017)
Fuhl, W., Santini, T., Kasneci, G., Kasneci, E.: PupilNet: convolutional neural networks for robust pupil detection. arXiv preprint arXiv:1601.04902 (2016)
Fuhl, W., Santini, T.C., Kübler, T., Kasneci, E.: ElSe: ellipse selection for robust pupil detection in real-world environments. In: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, pp. 123–130. ACM (2016)
Fuhl, W., Tonsen, M., Bulling, A., Kasneci, E.: Pupil detection for head-mounted eye tracking in the wild: an evaluation of the state of the art. Mach. Vis. Appl. 27(8), 1275–1288 (2016)
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017)
Gegenfurtner, A., Lehtinen, E., Säljö, R.: Expertise differences in the comprehension of visualizations: a meta-analysis of eye-tracking research in professional domains. Educ. Psychol. Rev. 23(4), 523–552 (2011)
Gilzenrat, M.S., Nieuwenhuis, S., Jepma, M., Cohen, J.D.: Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn. Affect. Behav. Neurosci. 10(2), 252–269 (2010)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3D graphics. ACM Trans. Graph. (TOG) 31(6), 164 (2012)
Haro, A., Flickner, M., Essa, I.: Detecting and tracking eyes by using their physiological properties, dynamics, and appearance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 163–168. IEEE (2000)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Holzman, P.S., Proctor, L.R., Levy, D.L., Yasillo, N.J., Meltzer, H.Y., Hurt, S.W.: Eye-tracking dysfunctions in schizophrenic patients and their relatives. Arch. Gen. Psychiatry 31(2), 143–151 (1974)
Javadi, A.H., Hakimi, Z., Barati, M., Walsh, V., Tcheang, L.: SET: a pupil detection method using sinusoidal approximation. Front. Neuroeng. 8, 4 (2015)
Kasneci, E., et al.: Driving with binocular visual field loss? A study on a supervised on-road parcours with simultaneous eye and head tracking. PLoS ONE 9(2), e87470 (2014)
Kassner, M., Patera, W., Bulling, A.: Pupil: an open source platform for pervasive eye tracking and mobile gaze-based interaction. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 1151–1160. ACM (2014)
Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014)
Krumpe, T., Scharinger, C., Gerjets, P., Rosenstiel, W., Spüler, M.: Disentangeling working memory load—finding inhibition and updating components in EEG data. In: Proceedings of the 6th International Brain-Computer Interface Meeting: BCI Past, Present, and Future, p. 174 (2016)
Lappi, O.: Eye movements in the wild: oculomotor control, gaze behavior & frames of reference. Neurosci. Biobehav. Rev. 69, 49–68 (2016)
LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)
Lee, Y., Micheals, R.J., Filliben, J.J., Phillips, P.J.: VASIR: an open-source research platform for advanced iris recognition technologies. J. Res. Nat. Inst. Stand. Technol. 118, 218 (2013)
Liu, X., Xu, F., Fujimura, K.: Real-time eye detection and tracking for driver observation under various light conditions. In: IEEE Intelligent Vehicle Symposium, vol. 2, pp. 344–351. IEEE (2002)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Marshall, S.P.: Identifying cognitive state from eye metrics. Aviat. Space Environ. Med. 78(5), B165–B175 (2007)
Matsushita, M.: Iris identification system and Iris identification method, US Patent 5,901,238, 4 May 1999
Palinko, O., Kun, A.L., Shyrokov, A., Heeman, P.: Estimating cognitive load using remote eye tracking in a driving simulator. In: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, pp. 141–144. ACM (2010)
Park, S., Zhang, X., Bulling, A., Hilliges, O.: Learning to find eye region landmarks for remote gaze estimation in unconstrained settings. In: Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications, p. 21. ACM (2018)
Patney, A., et al.: Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph. (TOG) 35(6), 179 (2016)
Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5
Prasad, D.K., Leung, M.K., Quek, C.: ElliFit: an unconstrained, non-iterative, least squares based geometric ellipse fitting method. Pattern Recogn. 46(5), 1449–1465 (2013)
Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 FPS via regressing local binary features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1692 (2014)
Santini, T., Fuhl, W., Kasneci, E.: PuRe: robust pupil detection for real-time pervasive eye tracking. Comput. Vis. Image Underst. 170, 40–50 (2018)
Suzuki, M., Yamamoto, N., Yamamoto, O., Nakano, T., Yamamoto, S.: Measurement of driver’s consciousness by image processing-a method for presuming driver’s drowsiness by eye-blinks coping with individual differences. In: SMC, vol. 4, pp. 2891–2896. IEEE (2006)
Świrski, L., Bulling, A., Dodgson, N.: Robust real-time pupil tracking in highly off-axis images. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 173–176. ACM (2012)
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Tonsen, M., Zhang, X., Sugano, Y., Bulling, A.: Labelled pupils in the wild: a dataset for studying pupil detection in unconstrained environments. In: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, pp. 139–142. ACM (2016)
Vera-Olmos, F.J., Malpica, N.: Deconvolutional neural network for pupil detection in real-world environments. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10338, pp. 223–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59773-7_23
Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Kot, A.C.: Benchmarking single-image reflection removal algorithms. In: Proceedings of ICCV (2017)
Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)
Yang, F., Yu, X., Huang, J., Yang, P., Metaxas, D.: Robust eyelid tracking for fatigue detection. In: ICIP, pp. 1829–1832, September 2012
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint (2017)
Acknowledgments
Work of the authors is supported by the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63). This research was supported by an IBM Shared University Research Grant including an IBM PowerAI environment. We especially thank our partners Benedikt Rombach, Martin Mähler and Hildegard Gerhardy from IBM for their expertise and support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Fuhl, W., Rosenstiel, W., Kasneci, E. (2019). 500,000 Images Closer to Eyelid and Pupil Segmentation. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-29888-3_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29887-6
Online ISBN: 978-3-030-29888-3
eBook Packages: Computer ScienceComputer Science (R0)