Skip to main content

Variational Optical Flow: Warping and Interpolation Revisited

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11678))

Included in the following conference series:

Abstract

One of the fundamental problems in computer vision is to attain the apparent motion in image sequences, the optical flow. As evaluations at hand of recent benchmarks show, this field is highly competitive. High ranking variational methods often consist of a combination of techniques, where frequently the presentation in the literature focuses on novel contributions in modelling.

In this paper we investigate the warping technique and related algorithmic design choices that are fundamental for practical implementation. At hand of a detailed yet straightforward derivation we discuss different warping variations. These are evaluated in numerical experiments, and furthermore we investigate the impact of a variety of interpolation methods that can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To have a meaningful representation of I at the boundary (with \(x=N\) or \(y=M\)) we change the last b-splines of order 1 in our construction to \(B_{N+k-1,1}^x(x_{N+k})=1\) and \(B_{M+k-1,1}^y(y_{M+k})=1\), cf. (16).

  2. 2.

    http://vision.middlebury.edu/flow/.

References

  1. Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. Int. J. Comput. Vis. 39(1), 41–56 (2000)

    Article  MATH  Google Scholar 

  2. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vis. 2, 283–310 (1989)

    Article  Google Scholar 

  3. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)

    Article  Google Scholar 

  4. Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75–104 (1996)

    Article  Google Scholar 

  5. de Boor, C.: A Practical Guide to Splines, revised edn. Springer, New York (2001)

    Google Scholar 

  6. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Article  Google Scholar 

  7. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015)

    Article  MATH  Google Scholar 

  9. Hoeltgen, L., Setzer, S., Breuß, M.: Intermediate flow field filtering in energy based optic flow computations. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 315–328. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23094-3_23

    Chapter  Google Scholar 

  10. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  Google Scholar 

  11. Mémin, E., Pérez, P.: Hierarchical estimation and segmentation of dense motion fields. Int. J. Comput. Vis. 46(2), 129–155 (2002)

    Article  MATH  Google Scholar 

  12. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vis. 67(2), 141–158 (2006)

    Article  Google Scholar 

  13. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  14. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2014)

    Article  Google Scholar 

  15. Tu, Z., Xi, W., Zhang, D., Poppe, R., Veltkamp, R.C., Lie, B., Yuan, J.: A survey of variational and CNN-based optical flow techniques. Sig. Process. Image Commun. 72, 9–24 (2019)

    Article  Google Scholar 

  16. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999)

    Article  Google Scholar 

  17. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

  18. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vis. 93(3), 368–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This publication was funded by the Graduate Research School (GRS) of the Brandenburg University of Technology Cottbus – Senftenberg. This work is part of the Cluster »StochMethod«.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Radow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radow, G., Breuß, M. (2019). Variational Optical Flow: Warping and Interpolation Revisited. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29888-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29887-6

  • Online ISBN: 978-3-030-29888-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics