Skip to main content

3D Color CLUT Compression by Multi-scale Anisotropic Diffusion

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11679))

Included in the following conference series:

  • 1011 Accesses

Abstract

3D CLUTs (Color Look Up Tables) are popular digital models used in image and video processing for color grading, simulation of analog films, and more generally for the application of various color transformations. The large size of these models leads to data storage issues when trying to distribute them on a large scale. Here, a highly effective lossy compression technique for 3D CLUTs is proposed. It is based on a multi-scale anisotropic diffusion scheme. Our method exhibits an average compression rate of more than \(99\%\), while ensuring visually indistinguishable differences with the application of the original CLUTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Explanation of what a 3D CLUT is. http://www.quelsolaar.com/technology/clut.html. Accessed 21 Mar 2019

  2. RocketStock, 35 Free LUTs for Color Grading. https://www.rocketstock.com/free-after-effects-templates/35-free-luts-for-color-grading-videos/. Accessed 21 Mar 2019

  3. Anjyo, K., Lewis, J.P., Pighin, F.: Scattered data interpolation for computer graphics. In: ACM SIGGRAPH 2014 Courses, p. 27. ACM (2014)

    Google Scholar 

  4. Balaji, A., Sharma, G., Shaw, M., Guay, R.: Preprocessing methods for improved lossless compression of color look-up tables. J. Imaging Sci. Technol. 52(4), 040901 (2008). https://doi.org/10.2352/J.ImagingSci.Technol

    Article  Google Scholar 

  5. Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Optical Eng.-NY-Marcel Dekker Incorporated 34, 433–433 (1992)

    Google Scholar 

  6. Duarte-Carvajalino, J.M., Castillo, P.E., Velez-Reyes, M.: Comparative study of semi-implicit schemes for nonlinear diffusion in hyperspectral imagery. IEEE Trans. Image Process. 16(5), 1303–1314 (2007)

    Article  MathSciNet  Google Scholar 

  7. Duchon, J.: Splines minimizing rotation-invariant semi-norms in sobolev spaces. Constructive Theory of Functions of Several Variables, vol. 571, pp. 85–100. Springer, Berlin (1977). https://doi.org/10.1007/BFb0086566

    Chapter  Google Scholar 

  8. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imaging and Vision 31(2–3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  9. Meijster, A., Roerdink, J.B., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. Mathematical Morphology and its Applications to Image and Signal Processing, pp. 331–340. Springer, Boston (2002). https://doi.org/10.1007/0-306-47025-X_36

    Chapter  Google Scholar 

  10. RawTherapee: Film Simulation Pack. https://rawpedia.rawtherapee.com/Film_Simulation. Accessed 21 Mar 2019

  11. Salomon, D., Motta, G.: Handbook of Data Compression, 5th edn. Springer, London (2009). https://doi.org/10.1007/978-1-84882-903-9

    Book  MATH  Google Scholar 

  12. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theor. 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

  13. Tschumperlé, D., Fourey, S.: G’MIC: GREYC’s Magic for Image Computing: A Full-Featured Open-Source Framework for Image Processing (2008–2019). https://gmic.eu/

  14. Tschumperlé, D., Deriche, R.: Vector-valued Image Regularization with PDE’s: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005)

    Article  Google Scholar 

  15. Weickert, J., Romeny, B.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tschumperlé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tschumperlé, D., Porquet, C., Mahboubi, A. (2019). 3D Color CLUT Compression by Multi-scale Anisotropic Diffusion. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11679. Springer, Cham. https://doi.org/10.1007/978-3-030-29891-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29891-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29890-6

  • Online ISBN: 978-3-030-29891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics