Abstract
In this paper, we present an effective approach to the biometric user verification using palmprints. The main idea and key innovation of the method is a compact 32-bit length vector to summarize the palmprint texture. This method provides the user verification with the accuracy reaching 92% in the experiments performed on the benchmark PolyU palmprint database. Moreover, the reported results show that the obtained accuracy appears to be hardly dependent on the number of enrolled samples. The proposed representation may be extremely useful in real life applications because of its compactness and effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Polyu database. http://www4.comp.polyu.edu.hk/~biometrics/. Accessed 03 Feb 2019
Akhtar, Z., Hadid, A., Nixon, M., Tistarelli, M., Dugelay, J.L., Marcel, S.: Biometrics: In: Search of Identity and Security (Q & A). IEEE MultiMedia (2017)
Almaghtuf, J., Khelifi, F.: Self-geometric relationship filter for efficient sift key-points matching in full and partial palmprint recognition. IET Biom. 7(4), 296–304 (2018)
Amraoui, A., Fakhri, Y., Kerroum, M.A.: Multispectral palmprint recognition based on fusion of local features. In: 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), pp. 1–6. IEEE (2018)
Bai, C.c., Wang, W.q., Zhao, T., Wang, R.x., Li, M.q.: Deep learning compact binary codes for fingerprint indexing. Front. Inf. Technol. Electron. Eng. 19(9), 1112–1123 (2018)
Bai, X., Gao, N., Zhang, Z., Zhang, D.: 3D palmprint identification combining blocked ST and PCA. Pattern Recognit. Lett. 100, 89–95 (2017)
Bounneche, M.D., Boubchir, L., Bouridane, A., Nekhoul, B., Ali-Chérif, A.: Multi-spectral palmprint recognition based on oriented multiscale log-gabor filters. Neurocomputing 205, 274–286 (2016)
Charfi, N., Trichili, H., Alimi, A.M., Solaiman, B.: Bimodal biometric system for hand shape and palmprint recognition based on sift sparse representation. Multimed. Tools Appl. 76(20), 20457–20482 (2017)
Dian, L., Dongmei, S.: Contactless palmprint recognition based on convolutional neural network. In: 2016 IEEE 13th International Conference on Signal Processing (ICSP), pp. 1363–1367. IEEE (2016)
Elgallad, E.A., Charfi, N., Alimi, A.M., Ouarda, W.: Human identity recognition using sparse auto encoder for texture information representation in palmprint images based on voting technique. In: 2017 Sudan Conference on Computer Science and Information Technology (SCCSIT), pp. 1–8. IEEE (2017)
Franzgrote, M., et al.: Palmprint verification on mobile phones using accelerated competitive code. In: 2011 International Conference on Hand-Based Biometrics, pp. 1–6. IEEE (2011)
Giełczyk, A., Choraś, M., Kozik, R.: Hybrid feature extraction for palmprint-based user authentication. In: 2018 International Conference on High Performance Computing & Simulation (HPCS), pp. 629–633. IEEE (2018)
Giełczyk, A., Choraś, M., Kozik, R.: Lightweight verification schema for image-based palmprint biometric systems. Mob. Inf. Syst. 2019, 9 pages (2019). https://doi.org/10.1155/2019/2325891
Haralick, R.M., Shanmugam, K., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)
Haralick, R.M., et al.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)
Huang, D.S., Jia, W., Zhang, D.: Palmprint verification based on principal lines. Pattern Recognit. 41(4), 1316–1328 (2008)
Jain, A.K., Nandakumar, K., Ross, A.: 50 years of biometric research: accomplishments, challenges, and opportunities. Pattern Recognit. Lett. 79, 80–105 (2016)
Jaswal, G., Kaul, A., Nath, R.: Multiple feature fusion for unconstrained palm print authentication. Comput. Electr. Eng. 72, 53–78 (2018)
Kong, W.K., Zhang, D.: Palmprint texture analysis based on low-resolution images for personal authentication. In: Object Recognition Supported by User Interaction for Service Robots, vol. 3, pp. 807–810. IEEE (2002)
Li, W., Yuan, W.q.: Multiple palm features extraction method based on vein and palmprint. J. Ambient. Intell. Hum. Comput., 1–15 (2018)
Luo, Y.T., et al.: Local line directional pattern for palmprint recognition. Pattern Recognit. 50, 26–44 (2016)
Mokni, R., Elleuch, M., Kherallah, M.: Biometric palmprint identification via efficient texture features fusion. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 4857–4864. IEEE (2016)
Mokni, R., Kherallah, M.: Novel palmprint biometric system combining several fractal methods for texture information extraction. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002267–002272. IEEE (2016)
Mokni, R., Mezghani, A., Drira, H., Kherallah, M.: Multiset canonical correlation analysis: texture feature level fusion of multiple descriptors for intra-modal palmprint biometric recognition. In: Paul, M., Hitoshi, C., Huang, Q. (eds.) PSIVT 2017. LNCS, vol. 10749, pp. 3–16. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75786-5_1
Ray, K.B., Misra, R.: Palm print recognition using hough transforms. In: 2015 International Conference on Computational Intelligence and Communication Networks (CICN), pp. 422–425. IEEE (2015)
Tabejamaat, M., Mousavi, A.: Generalized gabor filters for palmprint recognition. Pattern Anal. Appl. 21(1), 261–275 (2018)
Taouche, C., Batouche, M.C., Berkane, M., Taleb-Ahmed, A.: Multimodal biometric systems. In: 2014 International Conference on Multimedia Computing and Systems (ICMCS), pp. 301–308. IEEE (2014)
Travieso, C.M., Ticay-Rivas, J.R., Briceno, J.C., del Pozo-Baños, M., Alonso, J.B.: Hand shape identification on multirange images. Inf. Sci. 275, 45–56 (2014)
Verma, S.B., Chandran, S.: Analysis of sift and surf feature extraction in palmprint verification system. In: International Conference on Computing, Communication and Control Technology (IC4T), pp. 27–30 (2016)
Wang, Y., Wang, L., Cheung, Y.M., Yuen, P.C.: Learning compact binary codes for hash-based fingerprint indexing. IEEE Trans. Inf. Forensics Secur. 10(8), 1603–1616 (2015)
Wojciechowska, A., Choraś, M., Kozik, R.: Evaluation of the pre-processing methods in image-based palmprint biometrics. In: Choraś, M., Choraś, R. (eds.) IP&C 2017. AISC, vol. 681, pp. 43–48. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68720-9_6
Xu, X., Lu, L., Zhang, X., Lu, H., Deng, W.: Multispectral palmprint recognition using multiclass projection extreme learning machine and digital shearlet transform. Neural Comput. Appl. 27(1), 143–153 (2016)
Younesi, A., Amirani, M.C.: Gabor filter and texture based features for palmprint recognition. Procedia Comput. Sci. 108, 2488–2495 (2017)
Acknowledgements
The research was conducted using the BSM 81/2017 project’s wherewithal, which is founded by the Polish Ministry of Science and High Education.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Giełczyk, A., Marcialis, G.L., Choraś, M. (2019). Binary Code for the Compact Palmprint Representation Using Texture Features. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11679. Springer, Cham. https://doi.org/10.1007/978-3-030-29891-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-29891-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29890-6
Online ISBN: 978-3-030-29891-3
eBook Packages: Computer ScienceComputer Science (R0)