Abstract
Estimating the effectiveness of retrieval systems in unsupervised scenarios consists in a task of crucial relevance. By exploiting estimations which dot not require supervision, the retrieval results of many applications as rank aggregation and relevance feedback can be improved. In this paper, a novel approach for unsupervised effectiveness estimation is proposed based the intersection of ranking references at top-k positions of ranked lists. An experimental evaluation was conducted considering public datasets and different image features. The linear correlation between the proposed measure and the effectiveness evaluation measures was assessed, achieving high scores. In addition, the proposed measure was also evaluated jointly with rank aggregation methods, by assigning weights to ranked lists according to the effectiveness estimation of each feature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The constant e is set to 1.5 on the experimental evaluation.
References
Arica, N., Vural, F.T.Y.: BAS: a perceptual shape descriptor based on the beam angle statistics. Pattern Recognit. Lett. 24(9–10), 1627–1639 (2003)
Bai, S., Bai, X., Tian, Q., Latecki, L.J.: Regularized diffusion process on bidirectional context for object retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 41(5), 1213–1226 (2019)
Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1966)
Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, WWW 2001, pp. 613–622 (2001)
Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp. 28–36 (2003)
Gopalan, R., Turaga, P., Chellappa, R.: Articulation-invariant representation of non-planar shapes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 286–299. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_21
Huang, J., Kumar, S.R., Mitra, M., Zhu, W.J., Zabih, R.: Image indexing using color correlograms. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 1997, pp. 762–768 (1997)
Jia, Q., Tian, X.: Query difficulty estimation via relevance prediction for image retrieval. Signal Process. 110(C), 232–243 (2015)
Kovalev, V., Volmer, S.: Color co-occurence descriptors for querying-by-example. In: International Conference on Multimedia Modeling, p. 32 (1998)
Latecki, L.J., Lakmper, R., Eckhardt, U.: Shape descriptors for non-rigid shapes with a single closed contour. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000, pp. 424–429 (2000)
Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2(1), 1–19 (2006)
Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 286–299 (2007)
Ling, H., Yang, X., Latecki, L.J.: Balancing deformability and discriminability for shape matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 411–424. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_30
Manjunath, B., Ohm, J.R., Vasudevan, V., Yamada, A.: Color and texture descriptors. IEEE Trans. Circ. Syst. Video Technol. 11(6), 703–715 (2001)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Pedronette, D.C.G., da Silva Torres, R.: Unsupervised effectiveness estimation for image retrieval using reciprocal rank information. In: 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 321–328 (2015)
Pedronette, D.C.G., Penatti, O.A.B., Calumby, R.T., da Silva Torres, R.: Unsupervised distance learning by reciprocal kNN distance for image retrieval. In: International Conference on Multimedia Retrieval, ICMR 2014 (2014)
Pedronette, D.C.G., Penatti, O.A., da Silva Torres, R.: Unsupervised manifold learning using reciprocal kNN graphs in image re-ranking and rank aggregation tasks. Image Vis. Comput. 32(2), 120–130 (2014)
Pedronette, D.C.G., da Silva Torres, R.: Shape retrieval using contour features and distance optmization. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISAPP 2010, vol. 1, pp. 197–202 (2010)
Pedronette, D.C.G., da Silva Torres, R.: Image re-ranking and rank aggregation based on similarity of ranked lists. Pattern Recognit. 46(8), 2350–2360 (2013)
Pedronette, D.C.G., Gonçalves, F.M.F., Guilherme, I.R.: Unsupervised manifold learning through reciprocal kNN graph and Connected Components for image retrieval tasks. Pattern Recognit. 75, 161–174 (2018)
Piras, L., Giacinto, G.: Information fusion in content based image retrieval: a comprehensive overview. Inf. Fusion 37(Supplement C), 50–60 (2017)
da Silva Torres, R., Falcão, A.X.: Content-based image retrieval: theory and applications. Revista de Informática Teórica e Aplicada 13(2), 161–185 (2006)
da Silva Torres, R., Falcão, A.X.: Contour salience descriptors for effective image retrieval and analysis. Image Vis. Comput. 25(1), 3–13 (2007)
Stehling, R.O., Nascimento, M.A., Falcão, A.X.: A compact and efficient image retrieval approach based on border/interior pixel classification. In: ACM Conference on Information and Knowledge Management, CIKM 2002, pp. 102–109 (2002)
Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)
Tao, B., Dickinson, B.W.: Texture recognition and image retrieval using gradient indexing. J. Vis. Comun. Image Represent. 11(3), 327–342 (2000)
van de Weijer, J., Schmid, C.: Coloring local feature extraction. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 334–348. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_26
Xing, X., Zhang, Y., Han, M.: Query difficulty prediction for contextual image retrieval. In: Gurrin, C., et al. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 581–585. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12275-0_52
Zheng, L., Wang, S., Tian, L., He, F., Liu, Z., Tian, Q.: Query-adaptive late fusion for image search and person re-identification. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1741–1750, June 2015
Acknowledgments
The authors are grateful to the São Paulo Research Foundation - FAPESP (grants #2017/02091-4,#2018/15597-6, #2017/25908-6, and #2019/04754-6), the Brazilian National Council for Scientific and Technological Development - CNPq (grant #308194/2017-9), and Petrobras (grant #2017/00285-6).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Presotto, J.G.C., Valem, L.P., Pedronette, D.C.G. (2019). Unsupervised Effectiveness Estimation Through Intersection of Ranking References. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11679. Springer, Cham. https://doi.org/10.1007/978-3-030-29891-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-29891-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29890-6
Online ISBN: 978-3-030-29891-3
eBook Packages: Computer ScienceComputer Science (R0)