Skip to main content

Estimating the Noise Level Function with the Tree of Shapes and Non-parametric Statistics

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11679))

Included in the following conference series:

Abstract

The knowledge of the noise level within an image is a valuable information for many image processing applications. Estimating the noise level function (NLF) requires the identification of homogeneous regions, upon which the noise parameters are computed. Sutour et al. have proposed a method to estimate this NLF based on the search for homogeneous regions of square shape. We generalize this method to the search for homogeneous regions with arbitrary shape thanks to the tree of shapes representation of the image under study, thus allowing a more robust and precise estimation of the noise level function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.gipsa-lab.grenoble-inp.fr/~laurent.condat/imagebase.html

References

  1. Ballester, C., Caselles, V., Monasse, P.: The tree of shapes of an image. ESAIM Control. Optim. Calc. Var. 9, 1–18 (2003)

    Article  MathSciNet  Google Scholar 

  2. Beaurepaire, L., Chehdi, K., Vozel, B.: Identification of the nature of noise and estimation of its statistical parameters by analysis of local histograms. In: 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2805–2808. IEEE (1997)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  4. Carlinet, E., Géraud, T.: MToS: a tree of shapes for multivariate images. IEEE Trans. Image Process. 24(12), 5330–5342 (2015)

    Article  MathSciNet  Google Scholar 

  5. Carlinet, E., Géraud, T., Crozet, S.: The tree of shapes turned into a max-tree: a simple and efficient linear algorithm. In: Proceedings of the 24th IEEE International Conference on Image Processing (ICIP), Athens, Greece, pp. 1488–1492 (2018)

    Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  7. Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree of shapes of \(n\)D images. In: Proceedings of the 21st IEEE International Conference on Image Processing (ICIP), Paris, France, pp. 2933–2937 (2014)

    Google Scholar 

  8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: BM3D image denoising with shape-adaptive principal component analysis. In: SPARS 2009-Signal Processing with Adaptive Sparse Structured Representations (2009)

    Google Scholar 

  9. Deledalle, C.A., Duval, V., Salmon, J.: Non-local methods with shape-adaptive patches (NLM-SAP). J. Math. Imaging Vis. 43(2), 103–120 (2012)

    Article  MathSciNet  Google Scholar 

  10. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  Google Scholar 

  11. Droske, M., Rumpf, M.: Multiscale joint segmentation and registration of image morphology. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2181–2194 (2007)

    Article  Google Scholar 

  12. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 2, 56–65 (2002)

    Article  Google Scholar 

  13. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_9

    Chapter  MATH  Google Scholar 

  14. Kendall, M.G.: The treatment of ties in ranking problems. Biometrika 33(3), 239–251 (1945). http://www.jstor.org/stable/2332303

    Article  MathSciNet  Google Scholar 

  15. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  Google Scholar 

  16. Liu, C., Freeman, W.T., Szeliski, R., Kang, S.B.: Noise estimation from a single image. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 901–908. IEEE (2006)

    Google Scholar 

  17. Liu, X., Tanaka, M., Okutomi, M.: Single-image noise level estimation for blind denoising. IEEE Trans. Image Process. 22(12), 5226–5237 (2013)

    Article  Google Scholar 

  18. Mäkitalo, M., Foi, A.: Noise parameter mismatch in variance stabilization, with an application to poisson-Gaussian noise estimation. IEEE Trans. Image Process. 23(12), 5348–5359 (2014)

    Article  MathSciNet  Google Scholar 

  19. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)

    Article  Google Scholar 

  20. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  Google Scholar 

  21. Pyatykh, S., Hesser, J.: Image sensor noise parameter estimation by variance stabilization and normality assessment. IEEE Trans. Image Process. 23(9), 3990–3998 (2014)

    Article  MathSciNet  Google Scholar 

  22. Sutour, C., Deledalle, C.A., Aujol, J.F.: Estimation of the noise level function based on a nonparametric detection of homogeneous image regions. SIAM J. Imaging Sci. 8(4), 2622–2661 (2015)

    Article  MathSciNet  Google Scholar 

  23. Walker, J.S.: Combined image compressor and denoiser based on tree-adapted wavelet shrinkage. Opt. Eng. 41(7), 1520–1528 (2002)

    Article  Google Scholar 

  24. Xu, Y., Géraud, T., Najman, L.: Hierarchical image simplification and segmentation based on Mumford-Shah-salient level line selection. Pattern Recognit. Lett. 83, 278–286 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Tochon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esteban, B., Tochon, G., Géraud, T. (2019). Estimating the Noise Level Function with the Tree of Shapes and Non-parametric Statistics. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11679. Springer, Cham. https://doi.org/10.1007/978-3-030-29891-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29891-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29890-6

  • Online ISBN: 978-3-030-29891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics