Skip to main content

Master and Rookie Networks for Person Re-identification

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11679))

Included in the following conference series:

Abstract

Recognizing different visual signatures of people across non-overlapping cameras is still an open problem of great interest for the computer vision community, especially due to its importance in automatic video surveillance on large-scale environments. A main aspect of this application field, known as person re-identification (re-id), is the feature extraction step used to define a robust appearance of a person. In this paper, a novel two-branch Convolutional Neural Network (CNN) architecture for person re-id in video sequences is proposed. A pre-trained branch, called Master, leads the learning phase of the other un-trained branch, called Rookie. Using this strategy, the Rookie network is able to learn complementary features with respect to those computed by the Master network, thus obtaining a more discriminative model. Extensive experiments on two popular challenging re-id datasets have shown increasing performance in terms of convergence speed as well as accuracy in comparison to standard models, thus providing an alternative and concrete contribution to the current re-id state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3908–3916 (2015)

    Google Scholar 

  2. Andreopoulos, A., Hasler, S., Wersing, H., Janssen, H., Tsotsos, J.K., Korner, E.: Active 3D object localization using a humanoid robot. IEEE Trans. Robot. 27(1), 47–64 (2011)

    Article  Google Scholar 

  3. Avola, D., Bernardi, M., Cinque, L., Foresti, G.L., Massaroni, C.: Exploiting recurrent neural networks and leap motion controller for the recognition of sign language and semaphoric hand gestures. IEEE Trans. Multimedia 21(1), 234–245 (2019)

    Article  Google Scholar 

  4. Avola, D., Bernardi, M., Foresti, G.L.: Fusing depth and colour information for human action recognition. Multimedia Tools Appl. 78, 5919–5939 (2018)

    Article  Google Scholar 

  5. Avola, D., Cinque, L., Foresti, G.L., Marini, M.R.: An interactive and low-cost full body rehabilitation framework based on 3D immersive serious games. J. Biomed. Inform. 89, 81–100 (2019)

    Article  Google Scholar 

  6. Bak, S., Corvee, E., Bremond, F., Thonnat, M.: Person re-identification using Haar-based and DCD-based signature. In: IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–8 (2010)

    Google Scholar 

  7. Bazzani, L., Cristani, M., Murino, V.: Symmetry-driven accumulation of local features for human characterization and re-identification. Comput. Vis. Image Underst. 117(2), 130–144 (2013)

    Article  Google Scholar 

  8. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: International Symposium on Computational Statistics (COMPSTAT), pp. 177–186 (2010)

    Chapter  Google Scholar 

  9. Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: International Conference on Neural Information Processing Systems (NIPS), pp. 381–387 (2000)

    Google Scholar 

  10. Chen, Y., Zhu, X., Zheng, W., Lai, J.: Person re-identification by camera correlation aware feature augmentation. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 392–408 (2018)

    Article  Google Scholar 

  11. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807 (2017)

    Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  13. Gheissari, N., Sebastian, T.B., Hartley, R.: Person reidentification using spatiotemporal appearance. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1528–1535 (2006)

    Google Scholar 

  14. Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS), pp. 41–47 (2007)

    Google Scholar 

  15. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_21

    Chapter  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  17. Hu, L., Hong, C., Zeng, Z., Wang, X.: Two-stream person re-identification with multi-task deep neural networks. Mach. Vis. Appl. 29(6), 947–954 (2018)

    Article  Google Scholar 

  18. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  19. Jüngling, K., Bodensteiner, C., Arens, M.: Person re-identification in multi-camera networks. In: IEEE International Conference on Computer Vision and Pattern Recognition WORKSHOPS (CVPRW), pp. 55–61 (2011)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  21. Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: deep filter pairing neural network for person re-identification. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 152–159 (2014)

    Google Scholar 

  22. Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 31–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_3

    Chapter  Google Scholar 

  23. Liao, S., Hu, Y., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2197–2206 (2015)

    Google Scholar 

  24. Martinel, N., Micheloni, C., Foresti, G.L.: Saliency weighted features for person re-identification. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8927, pp. 191–208. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16199-0_14

    Chapter  Google Scholar 

  25. Matsukawa, T., Okabe, T., Sato, Y.: Person re-identification via discriminative accumulation of local features. In: 2014 International Conference on Pattern Recognition (CVPR), pp. 3975–3980 (2014)

    Google Scholar 

  26. Matsukawa, T., Suzuki, E.: Person re-identification using CNN features learned from combination of attributes. In: International Conference on Pattern Recognition (ICPR), pp. 2428–2433 (2016)

    Google Scholar 

  27. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: International Conference on International Conference on Machine Learning (ICML), pp. 807–814 (2010)

    Google Scholar 

  28. Nuzzi, C., Pasinetti, S., Lancini, M., Docchio, F., Sansoni, G.: Deep learning based machine vision: first steps towards a hand gesture recognition set up for collaborative robots. In: IEEE International Workshop on Metrology for Industry 4.0 and IoT (M4I), pp. 28–33 (2018)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, pp. 1–14 (2014)

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  32. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016)

    Google Scholar 

  33. Wu, S., Chen, Y.C., Li, X., Wu, A.C., You, J.J., Zheng, W.S.: An enhanced deep feature representation for person re-identification. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–8 (2016)

    Google Scholar 

  34. Yang, Y., Yang, J., Yan, J., Liao, S., Yi, D., Li, S.Z.: Salient color names for person re-identification. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 536–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_35

    Chapter  Google Scholar 

  35. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  36. Zhang, Y., Li, S.: Gabor-LBP based region covariance descriptor for person re-identification. In: International Conference on Image and Graphics (ICIG), pp. 368–371 (2011)

    Google Scholar 

  37. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: IEEE International Conference on Computer Vision (ICCV), pp. 1116–1124 (2015)

    Google Scholar 

  38. Zheng, W., Li, X., Xiang, T., Liao, S., Lai, J., Gong, S.: Partial person re-identification. In: IEEE International Conference on Computer Vision (ICCV), pp. 4678–4686 (2015)

    Google Scholar 

  39. Zhu, J., Zeng, H., Liao, S., Lei, Z., Cai, C., Zheng, L.: Deep hybrid similarity learning for person re-identification. IEEE Trans. Circ. Syst. Video Technol. 28(11), 3183–3193 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Massaroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avola, D., Cascio, M., Cinque, L., Fagioli, A., Foresti, G.L., Massaroni, C. (2019). Master and Rookie Networks for Person Re-identification. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11679. Springer, Cham. https://doi.org/10.1007/978-3-030-29891-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29891-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29890-6

  • Online ISBN: 978-3-030-29891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics