Skip to main content

Supervised Clinical Abbreviations Detection and Normalisation Approach

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11672))

Included in the following conference series:

Abstract

The ambiguous acronyms and abbreviations in clinical reports can be quite confusing for patients and doctors to understand, which will potentially lead to medical malpractice [15]. To solve this problem, we proposed a supervised approach to detect abbreviations in given clinical reports and normalise these abbreviations to medical concepts. In the step of detection, a seq2seq model with the attention mechanism was built and achieved the micro-average F1 score of 83.85% among 99 test reports. In the step of normalisation, we used both internal and external senses inventories to build one disambiguation classifier for each abbreviation. Finally, the proposed normalisation method achieved a micro-average accuracy of 74.7%, beating the first ranked team in the ShARe/CLEF eHealth 2013 competition, Task 2. This work provided a complete pipeline to handle ambiguous abbreviations in clinical documents, which is essential for healthcare providers and researchers to understand and subsequently leverage the clinical reports.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrew, N.: Deeplearning.ai: attention mechanism in sequence to sequence models. https://www.coursera.org/learn/nlp-sequence-models/lecture/lSwVa/attention-model

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  3. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  4. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  5. Das-Purkayastha, P., McLeod, K., Canter, R.: Specialist medical abbreviations as a foreign language. J. R. Soc. Med. 97(9), 456–456 (2004)

    Article  Google Scholar 

  6. Grossman, L.V., Mitchell, E.G., Hripcsak, G., Weng, C., Vawdrey, D.K.: A method for harmonization of clinical abbreviation and acronym sense inventories. J. Biomed. Inform. 88, 62–69 (2018)

    Article  Google Scholar 

  7. Jagannathan, V., et al.: WVU NLP class participation in ShARe/CLEF challenge. In: CLEF (Working Notes) (2013)

    Google Scholar 

  8. Jimeno-Yepes, A.J., McInnes, B.T., Aronson, A.R.: Exploiting mesh indexing in medline to generate a data set for word sense disambiguation. BMC Bioinformatics 12(1), 223 (2011)

    Article  Google Scholar 

  9. Joopudi, V., Dandala, B., Devarakonda, M.: A convolutional route to abbreviation disambiguation in clinical text. J. Biomed. Inform. 86, 71–78 (2018)

    Article  Google Scholar 

  10. Kuhn, I.F.: Abbreviations and acronyms in healthcare: when shorter isn’t sweeter. Pediatric nursing 33(5), 392–398 (2007)

    Google Scholar 

  11. Li, H., et al.: CNN-based ranking for biomedical entity normalization. BMC Bioinformatics 18(11), 385 (2017)

    Article  Google Scholar 

  12. Mowery, D.L., et al.: Normalizing acronyms and abbreviations to aid patient understanding of clinical texts: ShARe/CLEF ehealth challenge 2013, task 2. J. Biomed. Seman. 7(1), 43 (2016)

    Article  Google Scholar 

  13. Patrick, J.D., Safari, L., Ou, Y.: ShARe/CLEF eHealth 2013 normalization of acronyms/abbreviations challenge. In: CLEF (Working Notes). Citeseer (2013)

    Google Scholar 

  14. Saeed, M., Lieu, C., Raber, G., Mark, R.G.: MIMIC II: a massive temporal ICU patient database to support research in intelligent patient monitoring. In: Computers in Cardiology, pp. 641–644. IEEE (2002)

    Google Scholar 

  15. Sheppard, J.E., Weidner, L.C., Zakai, S., Fountain-Polley, S., Williams, J.: Ambiguous abbreviations: an audit of abbreviations in paediatric note keeping. Arch. Dis. Child. 93(3), 204–206 (2008)

    Article  Google Scholar 

  16. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  17. Walsh, K.E., Gurwitz, J.H.: Medical abbreviations: writing little and communicating less. Arch. Dis. Child. 93(10), 816–817 (2008)

    Article  Google Scholar 

  18. Weeber, M., Mork, J.G., Aronson, A.R.: Developing a test collection for biomedical word sense disambiguation. In: Proceedings of the AMIA Symposium, p. 746. American Medical Informatics Association (2001)

    Google Scholar 

  19. Wu, Y., Tang, B., Jiang, M., Moon, S., Denny, J.C., Xu, H.: Clinical acronym/abbreviation normalization using a hybrid approach. In: CLEF (Working Notes) (2013)

    Google Scholar 

  20. Xia, Y., et al.: Normalization of abbreviations/acronyms: THCIB at CLEF eHealth 2013 task 2. In: CLEF (Working Notes) (2013)

    Google Scholar 

  21. Xu, J., Zhang, Y., Xu, H., et al.: Clinical abbreviation disambiguation using neural word embeddings. In: Proceedings of BioNLP, vol. 15, pp. 171–176 (2015)

    Google Scholar 

  22. Yepes, A.J.: Word embeddings and recurrent neural networks based on long-short term memory nodes in supervised biomedical word sense disambiguation. J. Biomed. Inform. 73, 137–147 (2017)

    Article  Google Scholar 

  23. Zweigenbaum, P., Deléger, L., Lavergne, T., Névéol, A., Bodnari, A.: A supervised abbreviation resolution system for medical text. In: CLEF (Working Notes) (2013)

    Google Scholar 

Download references

Acknowledgements

This research was supported and supervised by Precision Driven Health Partnership (www.precisiondrivenhealth.com). We thank the organizers of ShaRe/CLEF 2013 Task 2 for providing the data used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, X., Zhang, E., Koh, Y.S. (2019). Supervised Clinical Abbreviations Detection and Normalisation Approach. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11672. Springer, Cham. https://doi.org/10.1007/978-3-030-29894-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29894-4_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29893-7

  • Online ISBN: 978-3-030-29894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics