Abstract
This paper investigates the equivalence between games represented by state transition models and its applications. We first define a notion of bisimulation equivalence between state transition models and prove that it can be logically characterized by Game Description Language (GDL). Then we introduce a concept of quotient state transition model. As the minimum equivalent of the original model, it allows us to improve the efficiency of model checking for GDL. Finally, we demonstrate with real games that bisimulation equivalence can be generalized to characterize more general game equivalence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622
Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press, Cambridge (2008)
van Benthem, J.: Modal Correspondence Theory. Ph.D. thesis, University of Amsterdam (1977)
van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. SYLI, pp. 167–247. Springer, Dordrecht (1984). https://doi.org/10.1007/978-94-009-6259-0_4
van Benthem, J.: Logic in Games. MIT Press, Cambridge (2014)
van Benthem, J., Bezhanishvili, N., Enqvist, S.: A new game equivalence and its modal logic. In: Proceedings Sixteenth Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2017), pp. 57–74 (2017)
Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)
Elmes, S., Reny, P.J.: On the strategic equivalence of extensive form games. J. Econ. Theor. 62(1), 1–23 (1994)
Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26(2), 62–72 (2005)
Goranko, V.: The basic algebra of game equivalences. Studia Logica 75(2), 221–238 (2003)
Grädel, E., Otto, M.: The freedoms of (guarded) bisimulation. In: Baltag, A., Smets, S. (eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp. 3–31. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5_1
Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM (JACM) 32(1), 137–161 (1985)
Jiang, G., Zhang, D., Perrussel, L., Zhang, H.: Epistemic GDL: a logic for representing and reasoning about imperfect information games. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 1138–1144 (2016)
Love, N., Hinrichs, T., Haley, D., Schkufza, E., Genesereth, M.: General game playing: game description language specification. Stanford Logic Group Computer Science Department Stanford University (2006). http://logic.stanford.edu/reports/LG-2006-01.pdf
Michon, J.A.: The game of jam: an isomorph of tic-tac-toe. Am. J. Psychol. 80(1), 137–140 (1967). http://www.jstor.org/stable/1420555
Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://doi.org/10.1007/BFb0017309
Pauly, M.: Logic for Social Software. Ph.D. thesis. University of Amsterdam (2001). ILLC Dissertation Series 2001–10
Pell, B.: Strategy generation and evaluation for meta-game playing. Ph.D. thesis. University of Cambridge (1993)
Reiter, R.: The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression. Artif. Intell. Math. Theory Comput.: Pap. Honor. John McCarthy 27, 359–380 (1991)
Ruan, J., van Der Hoek, W., Wooldridge, M.: Verification of games in the game description language. J. Log. Comput. 19(6), 1127–1156 (2009)
Thielscher, M.: A general game description language for incomplete information games. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 994–999 (2010)
Thompson, F.: Equivalence of games in extensive form. Class. Game Theory, 36 (1997)
Zhang, D., Thielscher, M.: A logic for reasoning about game strategies. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp. 1671–1677 (2015)
Zhang, D., Thielscher, M.: Representing and reasoning about game strategies. J. Philos. Log. 44(2), 203–236 (2015)
Zhang, H., Liu, D., Li, W.: Space-consistent game equivalence detection in general game playing. In: Cazenave, T., Winands, M.H.M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J. (eds.) CGW/GIGA -2015. CCIS, vol. 614, pp. 165–177. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39402-2_12
Acknowledgments
We are grateful to three anonymous referees for their insightful comments. Guifei Jiang acknowledges the support of the National Natural Science Foundation of China (NO.61806102), the Fundamental Research Funds for the Central Universities, and the Major Program of the National Social Science Foundation of China (NO.17ZDA026). Laurent Perrussel acknowledges the support of the ANR project AGAPE ANR-18-CE23-0013.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, G., Perrussel, L., Zhang, D., Zhang, H., Zhang, Y. (2019). Game Equivalence and Bisimulation for Game Description Language. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11670. Springer, Cham. https://doi.org/10.1007/978-3-030-29908-8_46
Download citation
DOI: https://doi.org/10.1007/978-3-030-29908-8_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29907-1
Online ISBN: 978-3-030-29908-8
eBook Packages: Computer ScienceComputer Science (R0)