Skip to main content

Towards Understanding Classification and Identification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11670))

Abstract

The paper focuses on two pivotal cognitive functions of both natural and AI agents, namely classification and identification. Inspired from the theory of teleosemantics, itself based on neuroscientific results, we show that these two functions are complementary and rely on distinct forms of knowledge representation. We provide a new perspective on well-known AI techniques by categorising them as either classificational or identificational. Our proposed Teleo-KR architecture provides a high-level framework for combining the two functions within a single AI system. As validation and demonstration on a concrete application, we provide experiments on the large-scale reuse of classificational (ontological) knowledge for the purposes of learning-based schema identification.

This paper was partly supported by the InteropEHRate project, co-funded by the European Union (EU) Horizon 2020 programme under grant number 826106.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://lov.linkeddata.es.

  2. 2.

    http://www.adampease.org/OP/.

  3. 3.

    https://schema.org/.

  4. 4.

    https://wiki.dbpedia.org/.

References

  1. Baader, F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Bader, S., Hitzler, P.: Dimensions of Neural-Symbolic Integration–a Structured Survey. arXiv preprint cs/0511042 (2005)

    Google Scholar 

  3. Barsalou, L.W.: Perceptual symbol systems. Behav. Brain Sci. 22, 577–660 (1999)

    Google Scholar 

  4. Bella, G., et al.: Language and domain aware lightweight ontology matching. J. Web Semant. 43, 1–17 (2017)

    Article  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  6. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. In: Readings in Artificial Intelligence and Databases, pp. 207–230. Morgan Kaufmann, Burlington (1989)

    Google Scholar 

  7. Brickley, D., Miller, L.: FOAF vocabulary specification 0.91 (2010)

    Google Scholar 

  8. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: an overview. In: Ontology Learning from Text: Methods, Evaluation and Applications, vol. 123, pp. 3–12 (2005)

    Google Scholar 

  9. Domingos, P.: Structured machine learning: ten problems for the next ten years. In: Proceedings of the Annual International Conference on Inductive Logic Programming (2007)

    Google Scholar 

  10. Euzenat, J., Shvaiko, P.: Ontology Matching, vol. 18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49612-0

    Book  MATH  Google Scholar 

  11. Evans, G., McDowell, J.: The Varieties of Reference. Clarendon Press (1982)

    Google Scholar 

  12. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45810-7_18

    Chapter  MATH  Google Scholar 

  13. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  14. Giunchiglia, F., Fumagalli, M.: Concepts as (recognition) abilities. In: FOIS (2016)

    Google Scholar 

  15. Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean. Commun. ACM 45(2), 61–65 (2002)

    Article  Google Scholar 

  16. Hinton, G.: Learning multiple layers of representation. Trends Cogn. Sci. 11(10), 428–434 (2007)

    Article  Google Scholar 

  17. da Cunha Lamb, L.: The grand challenges and myths of neural-symbolic computation. In: Dagstuhl Seminar 08041. Recurrent Neural Networks-Models, Capacities, and Applications. Schloss Dagstuhl, Dagstuhl (2008)

    Google Scholar 

  18. Macdonald, G., Papineau, D., et al.: Teleosemantics. Oxford University Press, Oxford (2006)

    Google Scholar 

  19. McNeill, F., Bundy, A.: Dynamic, automatic, first-order ontology repair by diagnosis of failed plan execution. IJSWIS 3(3), 1–35 (2007)

    Google Scholar 

  20. Millikan, R.G.: On Clear and Confused Ideas: An Essay About Substance Concepts. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  21. Millikan, R.G.: Language: A Biological Model. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  22. Millikan, R.G.: Learning Language. Published in German translation by Alex Burri as ‘Spracherwerb’. Biosemantik. Sprachphilosophische Aufsätze, pp. 85–115. Surkamp, Berlin (2012)

    Google Scholar 

  23. Millikan, R.G.: Beyond Concepts: Unicepts, Language, and Natural Information. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  24. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic Program. 19, 629–679 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. O’Reilly, R.C.: Six principles for biologically based computational models of cortical cognition. Trends Cogn. Sci. 2(11), 455–462 (1998)

    Article  Google Scholar 

  26. Ritze, D., et al.: Linguistic analysis for complex ontology matching. In: CEUR Workshop Proceedings, vol. 689. RWTH (2010)

    Google Scholar 

  27. Rosch, E.: Principles of categorization. In: Concepts: Core Readings, vol. 189 (1999)

    Google Scholar 

  28. Smith, L.B.: Learning to recognize objects. Psychol. Sci. 14(3), 244–250 (2003)

    Article  Google Scholar 

  29. Sarker, M.K., et al.: Explaining Trained Neural Networks with Semantic Web Technologies: First Steps. arXiv preprint. arXiv: 1710.04324 (2017)

  30. Sleeman, J., et al.: Entity type recognition for heterogeneous semantic graphs. AI Mag. 36(1), 75–86 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mattia Fumagalli , Gábor Bella or Fausto Giunchiglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fumagalli, M., Bella, G., Giunchiglia, F. (2019). Towards Understanding Classification and Identification. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11670. Springer, Cham. https://doi.org/10.1007/978-3-030-29908-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29908-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29907-1

  • Online ISBN: 978-3-030-29908-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics