Abstract
Understanding and forecasting human movement paths are vital for a wide range of real world applications. It is not an easy task to generate plausible future paths as the scenes and human movement patterns are often very complex. In this paper, we propose a social pyramid based prediction method (SPP), which includes two encoders to capture motion and social information. Specifically, we design a social pyramid map structure for the Social encoder, which can differentiate the influence of other pedestrians in nearby areas or remote areas based on their spatial locations. For the Motion encoder, a mixing attention mechanism is proposed to combine the location coordinates and velocity vectors. The two encoded features are then merged and passed to the decoder which generates future paths of pedestrians. Our extensive experimental results demonstrate competitive prediction performance from our method compared to state-of-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Li, F.F., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: CVPR, pp. 961–971, June 2016
Bartoli, F., Lisanti, G., Ballan, L., Del Bimbo, A.: Context-aware trajectory prediction. arXiv preprint arXiv:1705.02503 (2017)
Bhattacharyya, A., Fritz, M., Schiele, B.: Long-term on-board prediction of people in traffic scenes under uncertainty. In: CVPR, June 2018
Chen, M., Ding, G., Zhao, S., Chen, H., Liu, Q., Han, J.: Reference based LSTM for image captioning. In: AAAI, pp. 3981–3987 (2017)
Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)
Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. In: CVPR, June 2018
Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Soft+ hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection. arXiv preprint arXiv:1702.05552 (2017)
Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Tracking by prediction: a deep generative model for mutli-person localisation and tracking. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1122–1132. IEEE (2018)
Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)
Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: ICML, vol. 14, pp. 1764–1772 (2014)
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: CVPR, June 2018
Hasan, I., Setti, F., Tsesmelis, T., Del Bue, A., Galasso, F., Cristani, M.: MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses. In: CVPR, June 2018
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Kim, K., Lee, D., Essa, I.: Gaussian process regression flow for analysis of motion trajectories. In: ICCV, pp. 1164–1171. IEEE (2011)
Kim, S., et al.: BRVO: predicting pedestrian trajectories using velocity-space reasoning. Int. J. Robot. Res. 34(2), 201–217 (2015)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M.: DESIRE: distant future prediction in dynamic scenes with interacting agents. In: CVPR (2017)
Li, S., Li, W., Cook, C., Zhu, C., Gao, Y.: Independently Recurrent Neural Network (IndRNN): building a longer and deeper RNN. In: CVPR, June 2018
Li, Y.: A deep spatiotemporal perspective for understanding crowd behavior. IEEE Trans. Multimed., 1–8 (2018). https://doi.org/10.1109/TMM.2018.2834873
Li, Y.: Pedestrian path forecasting in crowd: a deep spatio-temporal perspective. In: Proceedings of the ACM on Multimedia Conference, pp. 235–243. ACM (2017)
Liu, J., Wang, G., Hu, P., Duan, L.Y., Kot, A.C.: Global context-aware attention LSTM networks for 3D action recognition. In: CVPR, pp. 1647–1656 (2017)
Lv, J., Li, Q., Sun, Q., Wang, X.: T-CONV: a convolutional neural network for multi-scale taxi trajectory prediction. In: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 82–89. IEEE (2018)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: CVPR, pp. 935–942. IEEE (2009)
Nikhil, N., Morris, B.T.: Convolutional neural network for trajectory prediction. arXiv preprint arXiv:1809.00696 (2018)
Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: ICCV, pp. 261–268. IEEE (2009)
Ren, J.S., et al.: Look, listen and learn - a multimodal LSTM for speaker identification. In: AAAI, pp. 3581–3587 (2016)
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Savarese, S.: SoPhie: an attentive gan for predicting paths compliant to social and physical constraints. arXiv preprint arXiv:1806.01482 (2018)
Su, H., Dong, Y., Zhu, J., Ling, H., Zhang, B.: Crowd scene understanding with coherent recurrent neural networks. In: IJCAI, pp. 3469–3476 (2016)
Su, H., Zhu, J., Dong, Y., Zhang, B.: Forecast the plausible paths in crowd scenes. In: IJCAI, pp. 2772–2778 (2017)
Sun, L., Yan, Z., Mellado, S.M., Hanheide, M., Duckett, T.: 3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data. arXiv preprint arXiv:1710.00126 (2017)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: NIPS, pp. 3104–3112 (2014)
Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: ICRA, pp. 1–7, May 2018. https://doi.org/10.1109/ICRA.2018.8460504
Vemula, A., Muelling, K., Oh, J.: Modeling cooperative navigation in dense human crowds. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1685–1692. IEEE (2017)
Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2008)
Xie, D., Todorovic, S., Zhu, S.C.: Inferring “dark matter” and “dark energy” from videos. In: ICCV, December 2013
Xu, Y., Piao, Z., Gao, S.: Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: CVPR, June 2018
Xue, H., Huynh, D., Reynolds, M.: Bi-Prediction: pedestrian trajectory prediction based on bidirectional LSTM classification. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 307–314 (2017)
Xue, H., Huynh, D.Q., Reynolds, M.: SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1186–1194. IEEE (2018)
Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: CVPR, pp. 1345–1352. IEEE (2011)
Yi, S., Li, H., Wang, X.: Understanding pedestrian behaviors from stationary crowd groups. In: CVPR, pp. 3488–3496 (2015)
Yi, S., Li, H., Wang, X.: Pedestrian behavior understanding and prediction with deep neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 263–279. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_16
Zhou, B., Wang, X., Tang, X.: Understanding collective crowd behaviors: learning a mixture model of dynamic pedestrian-agents. In: CVPR, pp. 2871–2878. IEEE (2012)
Zhu, W., et al.: Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In: AAAI, pp. 3697–3703 (2016)
Zou, H., Su, H., Song, S., Zhu, J.: Understanding human behaviors in crowds by imitating the decision-making process. In: AAAI (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Xue, H., Huynh, D.Q., Reynolds, M. (2019). Pedestrian Trajectory Prediction Using a Social Pyramid. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-29911-8_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29910-1
Online ISBN: 978-3-030-29911-8
eBook Packages: Computer ScienceComputer Science (R0)