Skip to main content

May Radiomic Data Predict Prostate Cancer Aggressiveness?

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1089))

Abstract

Radiomics can quantify tumor phenotypic characteristics non-invasively by defining a signature correlated with biological information. Thanks to algorithms derived from computer vision to extract features from images, and machine learning methods to mine data, Radiomics is the perfect case study of application of Artificial Intelligence in the context of precision medicine. In this study we investigated the association between radiomic features extracted from multi-parametric magnetic resonance imaging (mp-MRI)of prostate cancer (PCa) and the tumor histologic subtypes (using Gleason Score) using machine learning algorithms, in order to identify which of the mp-MRI derived radiomic features can distinguish high and low risk PCa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Gleason grading system is used to help evaluate the prognosis of men with prostate cancer using samples from a prostate biopsy. The pathologist looks at how the cancer cells are arranged in the prostate and assigns a score on a scale of 3 to 5 from 2 different locations. Please note the notation: the first number is the most common grade in all the samples, while the second number is the highest grade of what’s left. Gleason Score = the most common grade + the highest other grade in the samples.

  2. 2.

    The PI-RADS v2 [25] (Prostate Imaging Reporting & Data System) assessment categories are based on the findings of mp-MRI, combining T2-weighted (T2W), diffusion weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging. The PI-RADS assessment category determines the likelihood of clinically significant prostate cancer. A score, ranging from 1 to 5, is given accordingly to each imaging technique, with 1 being most probably benign (clinically significant cancer is highly unlikely to be present) and 5 being high suspicious for malignancy.

References

  1. Lambin, P., et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 14, 749 (2017). https://doi.org/10.1038/nrclinonc.2017.141

    Article  Google Scholar 

  2. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016). https://doi.org/10.1148/radiol.2015151169

    Article  Google Scholar 

  3. Larue, R.T.H.M., et al.: Influence of gray level discretization on radiomic feature stability for different CT scanners, tube currents and slice thiknesses: a comprehensive phantom study. Acta Oncol. 56, 1544–1553 (2017)

    Article  Google Scholar 

  4. Barucci, A., et al.: Exposing cancer’s complexity using radiomics in clinical imaging. An investigation on the role of histogram analysis as imaging biomarker to unravel intra-tumour heterogeneity. In: 2018 IEEE Workshop on Complexity in Engineering (COMPENG), pp. 1–5 (2018). https://doi.org/10.1109/CompEng.2018.8536244

  5. Stoyanova, R., et al.: Prostate cancer radiomics and the promise of radiogenomics. Transl. Cancer Res. 5(4), 432–447 (2016). https://doi.org/10.21037/tcr.2016.06.20

    Article  Google Scholar 

  6. Aerts, H.J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., et al.: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 5, 4006 (2014). https://doi.org/10.1038/ncomms5006

    Article  Google Scholar 

  7. Avanzo, M., Stancanello, J., El Naga, I.: Beyond imaging: the promise of radiomics. Physica Med. 38, 122–139 (2017). https://doi.org/10.1016/j.ejmp.2017.05.071

    Article  Google Scholar 

  8. Bray, F., et al.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018)

    Article  Google Scholar 

  9. Ahmed, H.U., et al.: Transatlantic consensus group on active surveillance and focal therapy for prostate cancer. BJU Int. 109, 1636–1647 (2012)

    Article  Google Scholar 

  10. King, C.R., Long, J.P.: Prostate biopsy grading errors: a sampling problem? Int. J. Cancer 90, 326–330 (2000)

    Article  Google Scholar 

  11. Epstein, J.I., Feng, Z., Trock, B.J., Pierorazio, P.M.: Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades. Eur. Urol. 61, 1019–1024 (2012)

    Article  Google Scholar 

  12. Berglung, R.K., et al.: Pathological upgrading and up staging with immediate repeat biopsy in patients elegible for active surveillance. J. Urol. 180, 1964–1967 (2008)

    Article  Google Scholar 

  13. Peng, Y., et al.: Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score-a computer-aided diagnosis development study. Radiology 267, 787–796 (2013)

    Article  Google Scholar 

  14. Tiwari, P., Viswanath, S., Kurhanewicz, J., Sridhar, A., Madabhushi, A.: Multimodal wavelet embedding representation for data combination (MaWERiC): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection. NMR Biomed. 25, 607–619 (2012)

    Article  Google Scholar 

  15. Moradi, M., et al.: Multiparametric MRI maps for detection and grading of dominant prostate tumors. J. Magn. Reson. Imaging 35, 1403–1413 (2012)

    Article  Google Scholar 

  16. Barucci, A., et al.: 301. Prostate cancer Radiomics using multiparametric MR imaging: an exploratory study. In: Proceedings of 10th Congress of the Associazione Italiana di Fisica Medica - AIFM. Physica Medica: Eur. J. Med. Phys. 56, 246. Elsevier (2018). https://doi.org/10.1016/j.ejmp.2018.04.310

    Article  Google Scholar 

  17. Mazaheri, Y., et al.: Prostate cancer: identification with combined diffusion weighted MR imaging and 3D 1H MR spectroscopic imaging-correlation with pathologic findings. Radiology 246, 480–488 (2008)

    Article  Google Scholar 

  18. Wibmer, A., et al.: Haralick texture analysis of prostate MRI: Utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur. Radiol. 25, 2840–2850 (2015)

    Article  Google Scholar 

  19. Fehr, D., et al.: Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc. Natl. Acad. Sci. USA 112, 6265–6273 (2015)

    Article  Google Scholar 

  20. Chen, T., et al.: Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. PI-RADS v2. J. Magn. Reson. Imaging 49, 875–884 (2019). https://doi.org/10.1002/jmri.26243

    Article  Google Scholar 

  21. Sidhu, H.S., et al.: Textural analysis of multiparametric MRI detects transition zone prostate cancer. Eur. Radiol. 27, 1–11 (2017)

    Article  Google Scholar 

  22. Khalvati, F., Wong, A., Haider, M.A.: Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature model. BMC Med. Imaging 15, 27 (2015)

    Article  Google Scholar 

  23. Vignati, A., et al.: Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys. Med. Biol. 60, 2685–2701 (2015)

    Article  Google Scholar 

  24. Nketiah, G., et al.: T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur. Radiol. 27, 3050–3059 (2016)

    Article  Google Scholar 

  25. Weinreb, J.C., et al.: PI-RADS prostate imaging - reporting and data systems: 2015, version 2. Eur. Urol. 69, 16–40 (2016)

    Article  Google Scholar 

  26. Langer, D.L., et al.: Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiology 255, 485–494 (2010)

    Article  Google Scholar 

  27. Oto, A., et al.: Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am. J. Roentgenol. 197, 1382–1390 (2011)

    Article  Google Scholar 

  28. Nagarajan, M.B., et al.: Classification of small lesions in breast MRI: evaluating the role of dynamically extracted texture features through feature selection. J. Med. Biol. Eng. 33, 33 (2013)

    Article  Google Scholar 

  29. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  30. van Griethuysen, J.J.M., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danila Germanese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Germanese, D. et al. (2019). May Radiomic Data Predict Prostate Cancer Aggressiveness?. In: Vento, M., et al. Computer Analysis of Images and Patterns. CAIP 2019. Communications in Computer and Information Science, vol 1089. Springer, Cham. https://doi.org/10.1007/978-3-030-29930-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29930-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29929-3

  • Online ISBN: 978-3-030-29930-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics