Abstract
Complex networks constitute the backbone of complex systems. They represent a powerful interpretation tool for describing and analyzing many different kinds of systems from biology, economics, engineering and social networks. Uncovering the community structure exhibited by real networks is a crucial step towards a better understanding of complex systems, revealing the internal organization of nodes. However, existing algorithms in the literature up-to-date present several crucial issues, and the question of how good an algorithm is, with respect to others, is still open. Recently, Newman [18] suggested modularity as a natural measure of the goodness of network community decompositions. Here we propose an implementation of an Immunological Algorithm, a population based computational systems inspired by the immune system and its features, to perform community detection on the methods of modularity maximization. The reliability and efficiency of the proposed algorithm has been validating by comparing it with Louvain algorithm one of the fastest and the popular algorithm based on a multiscale modularity optimization scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bickel, P.J., Chen, A.: A nonparametric view of network models and newman girvan and other modularities. Proc. Natl. Acad. Sci. 106(50), 21068–21073 (2009). https://doi.org/10.1103/PhysRevE.74.036104
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006). https://doi.org/10.1016/j.physrep.2005.10.009
Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2007). https://doi.org/10.1109/TKDE.2007.190689
Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery methods in complex networks. Stat. Anal. Data Min. ASA Data Sci. J. 4(5), 512–546 (2011). https://doi.org/10.1002/sam.10133
Cutello, V., Lee, D., Nicosia, G., Pavone, M., Prizzi, I.: Aligning multiple protein sequences by hybrid clonal selection algorithm with insert-remove-gaps and blockshuffling operators. In: Proceedings of the 5th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol. 4163, pp. 321–334 (2006). https://doi.org/10.1007/11823940_25
Cutello, V., Nicosia, G., Pavone, M., Prizzi, I.: Protein multiple sequence alignment by hybrid bio-inspired algorithms. Nucl. Acids Res. 39(6), 1980–1992 (2011). https://doi.org/10.1093/nar/gkq1052
Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein structure prediction on lattice models. IEEE Trans. Evol. Comput. 11(1), 101–117 (2007). https://doi.org/10.1109/TEVC.2006.880328
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002
Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007). https://doi.org/10.1073/pnas.0605965104
Fouladvand, S., Osareh, A., Shadgar, B., Pavone, M., Sharafia, S.: DENSA: an effective negative selection algorithm with flexible boundaries for selfspace and dynamic number of detectors. Eng. Appl. Artif. Intell. 62, 359–372 (2016). https://doi.org/10.1016/j.engappai.2016.08.014
Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799
Mucha, P.J., Onnela, J., Porter, M.: Communities in networks. Not. Am. Math. Soc. 56, 1082–1097 (2009)
Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). https://doi.org/10.1137/S003614450342480
Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004). https://doi.org/10.1103/PhysRevE.69.066133
Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006). https://doi.org/10.1103/PhysRevE.74.036104
Newman, M.E.: Communities, modules and large-scale structure in networks. Nat. Phys. 8(1), 25 (2012). https://doi.org/10.1038/nphys2162
Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113
Pavone, M., Narzisi, G., Nicosia, G.: Clonal selection - an immunological algorithm for global optimization over continuous spaces. J. Glob. Optim. 53(4), 769–808 (2012). https://doi.org/10.1007/s10898-011-9736-8
Poggiolini, M., Engelbrecht, A.: Application of the feature-detection rule to the negative selection algorithm. Expert Syst. Appl. 40(8), 3001–3014 (2013). https://doi.org/10.1016/j.eswa.2012.12.016
Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Not. AMS 56(9), 1082–1097 (2009)
Smith, S., Timmis, J.: Immune network inspired evolutionary algorithm for the diagnosis of Parkinsons disease. Biosystems 94(1–2), 34–46 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Spampinato, A.G., Scollo, R.A., Cavallaro, S., Pavone, M., Cutello, V. (2020). An Immunological Algorithm for Graph Modularity Optimization. In: Ju, Z., Yang, L., Yang, C., Gegov, A., Zhou, D. (eds) Advances in Computational Intelligence Systems. UKCI 2019. Advances in Intelligent Systems and Computing, vol 1043. Springer, Cham. https://doi.org/10.1007/978-3-030-29933-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-29933-0_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-29932-3
Online ISBN: 978-3-030-29933-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)