Skip to main content

An Immunological Algorithm for Graph Modularity Optimization

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1043))

Included in the following conference series:

  • 950 Accesses

Abstract

Complex networks constitute the backbone of complex systems. They represent a powerful interpretation tool for describing and analyzing many different kinds of systems from biology, economics, engineering and social networks. Uncovering the community structure exhibited by real networks is a crucial step towards a better understanding of complex systems, revealing the internal organization of nodes. However, existing algorithms in the literature up-to-date present several crucial issues, and the question of how good an algorithm is, with respect to others, is still open. Recently, Newman [18] suggested modularity as a natural measure of the goodness of network community decompositions. Here we propose an implementation of an Immunological Algorithm, a population based computational systems inspired by the immune system and its features, to perform community detection on the methods of modularity maximization. The reliability and efficiency of the proposed algorithm has been validating by comparing it with Louvain algorithm one of the fastest and the popular algorithm based on a multiscale modularity optimization scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bickel, P.J., Chen, A.: A nonparametric view of network models and newman girvan and other modularities. Proc. Natl. Acad. Sci. 106(50), 21068–21073 (2009). https://doi.org/10.1103/PhysRevE.74.036104

    Article  MATH  Google Scholar 

  2. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006). https://doi.org/10.1016/j.physrep.2005.10.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2007). https://doi.org/10.1109/TKDE.2007.190689

    Article  MATH  Google Scholar 

  5. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery methods in complex networks. Stat. Anal. Data Min. ASA Data Sci. J. 4(5), 512–546 (2011). https://doi.org/10.1002/sam.10133

    Article  MathSciNet  Google Scholar 

  6. Cutello, V., Lee, D., Nicosia, G., Pavone, M., Prizzi, I.: Aligning multiple protein sequences by hybrid clonal selection algorithm with insert-remove-gaps and blockshuffling operators. In: Proceedings of the 5th International Conference on Artificial Immune Systems (ICARIS). LNCS, vol. 4163, pp. 321–334 (2006). https://doi.org/10.1007/11823940_25

    Google Scholar 

  7. Cutello, V., Nicosia, G., Pavone, M., Prizzi, I.: Protein multiple sequence alignment by hybrid bio-inspired algorithms. Nucl. Acids Res. 39(6), 1980–1992 (2011). https://doi.org/10.1093/nar/gkq1052

    Article  Google Scholar 

  8. Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein structure prediction on lattice models. IEEE Trans. Evol. Comput. 11(1), 101–117 (2007). https://doi.org/10.1109/TEVC.2006.880328

    Article  Google Scholar 

  9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010). https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  10. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007). https://doi.org/10.1073/pnas.0605965104

    Article  Google Scholar 

  11. Fouladvand, S., Osareh, A., Shadgar, B., Pavone, M., Sharafia, S.: DENSA: an effective negative selection algorithm with flexible boundaries for selfspace and dynamic number of detectors. Eng. Appl. Artif. Intell. 62, 359–372 (2016). https://doi.org/10.1016/j.engappai.2016.08.014

    Article  Google Scholar 

  12. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  13. Mucha, P.J., Onnela, J., Porter, M.: Communities in networks. Not. Am. Math. Soc. 56, 1082–1097 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003). https://doi.org/10.1137/S003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  15. Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004). https://doi.org/10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  16. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006). https://doi.org/10.1103/PhysRevE.74.036104

    Article  MathSciNet  Google Scholar 

  17. Newman, M.E.: Communities, modules and large-scale structure in networks. Nat. Phys. 8(1), 25 (2012). https://doi.org/10.1038/nphys2162

    Article  Google Scholar 

  18. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  19. Pavone, M., Narzisi, G., Nicosia, G.: Clonal selection - an immunological algorithm for global optimization over continuous spaces. J. Glob. Optim. 53(4), 769–808 (2012). https://doi.org/10.1007/s10898-011-9736-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Poggiolini, M., Engelbrecht, A.: Application of the feature-detection rule to the negative selection algorithm. Expert Syst. Appl. 40(8), 3001–3014 (2013). https://doi.org/10.1016/j.eswa.2012.12.016

    Article  Google Scholar 

  21. Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Not. AMS 56(9), 1082–1097 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Smith, S., Timmis, J.: Immune network inspired evolutionary algorithm for the diagnosis of Parkinsons disease. Biosystems 94(1–2), 34–46 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pavone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spampinato, A.G., Scollo, R.A., Cavallaro, S., Pavone, M., Cutello, V. (2020). An Immunological Algorithm for Graph Modularity Optimization. In: Ju, Z., Yang, L., Yang, C., Gegov, A., Zhou, D. (eds) Advances in Computational Intelligence Systems. UKCI 2019. Advances in Intelligent Systems and Computing, vol 1043. Springer, Cham. https://doi.org/10.1007/978-3-030-29933-0_20

Download citation

Publish with us

Policies and ethics