Skip to main content

A Hybrid Human Motion Prediction Approach for Human-Robot Collaboration

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1043))

Included in the following conference series:

  • 1117 Accesses

Abstract

Prediction of human motion is useful for a robot to collaborate with a human partner. In this paper, we propose a hybrid approach for the robot to predict the human partner’s motion by using position and haptic information. First, a computational model is established to describe the change of the human partner’s motion, which is fitted by using the historical human motion data. The output of this model is used as the robot’s reference position in an impedance control model. Then, this reference position is modified by minimizing the interaction force between the human and robot, which indicates the discrepancy between the predicted motion and the real one. The combination of the prediction using a computational model and modification using the haptic feedback enables the robot to actively collaborate with the human partner. Simulation results show that the proposed hybrid approach outperforms impedance control, model-based prediction only and haptic feedback only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., Khatib, O.: Progress and prospects of the human-robot collaboration. Auton. Robot. 42(5), 957–975 (2018). https://doi.org/10.1007/s10514-017-9677-2

    Article  Google Scholar 

  2. Al-Jarrah, O.M., Zheng, Y.F.: Arm-manipulator coordination for load sharing using compliant control. In: Proceedings of the 1996 IEEE International Conference on Robotics and Automation, pp. 1000–1005, April 1996

    Google Scholar 

  3. Albu-Schäffer, A., Ott, C., Hirzinger, G.: A unified passivity based control framework for position, torque and impedance control of flexible joint robots. Int. J. Robot. Res. 26(1), 23–29 (2007)

    Article  Google Scholar 

  4. Corteville, B., Aertbelien, E., Bruyninckx, H., Schutter, J.D., Brussel, H.V.: Human-inspired robot assistant for fast point-to-point movements. In: IEEE International Conference on Robotics and Automation, pp. 3639–3644 (2007)

    Google Scholar 

  5. Hogan, N.: Impedance control: an approach to manipulation. J. Dyn. Syst. Meas. Control Trans. ASME 107(1), 1–24 (1985)

    Article  Google Scholar 

  6. Li, Y., Ge, S.S.: Human-robot collaboration based on motion intention estimation. IEEE/ASME Trans. Mechatron. 19(3), 1007–1014 (2014). https://doi.org/10.1109/TMECH.2013.2264533. http://ieeexplore.ieee.org/document/6545352/

    Article  Google Scholar 

  7. Li, Y., Ge, S.S.: Force tracking control for motion synchronization in human-robot collaboration. Robotica 34(6), 1260–1281 (2016). https://doi.org/10.1017/S0263574714002240

    Article  Google Scholar 

  8. Li, Y., Ge, S.S., Zhang, Q., Lee, T.H.: Neural networks impedance control of robots interacting with environments. IET Control Theory Appl. 7(11), 1509–1519 (2013). https://doi.org/10.1049/iet-cta.2012.1032

    Article  MathSciNet  Google Scholar 

  9. Li, Y., Tee, K.P., Yan, R., Chan, W.L., Wu, Y.: A framework of human-robot coordination based on game theory and policy iteration. IEEE Trans. Robot. 32(6), 1408–1418 (2016). https://doi.org/10.1109/TRO.2016.2597322. http://ieeexplore.ieee.org/document/7548305/

    Article  Google Scholar 

  10. Lu, W.S., Meng, Q.H.: Impedance control with adaptation for robotic manipulations. IEEE Trans. Robot. Autom. 7(3), 408–415 (1991)

    Article  Google Scholar 

  11. Maeda, Y., Hara, T., Arai, T.: Human-robot cooperative manipulation with motion estimation. In: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), vol. 4, pp. 2240–2245 (2001). https://doi.org/10.1109/IROS.2001.976403

  12. Passenberg, C., Buss, M.: A survey of environment-, operator-, and task-adapted controllers for teleoperation systems. Mechatronics 20(7), 787–801 (2010). https://doi.org/10.1016/J.MECHATRONICS.2010.04.005. https://www.sciencedirect.com/science/article/abs/pii/S0957415810000735

    Article  Google Scholar 

  13. Rubagotti, M., Taunyazov, T., Omarali, B., Shintemirov, A.: Semi-autonomous robot teleoperation with obstacle avoidance via model predictive control. IEEE Robot. Autom. Lett. 4(3), 2746–2753 (2019). https://doi.org/10.1109/LRA.2019.2917707

    Article  Google Scholar 

  14. Wang, D., Cheah, C.C.: An iterative learning-control scheme for impedance control of robotic manipulators. Int. J. Robot. Res. 17(10), 1091–1099 (1998)

    Article  Google Scholar 

  15. Wang, Y., Sheng, Y., Wang, J., Zhang, W.: Optimal collision-free robot trajectory generation based on time series prediction of human motion. IEEE Robot. Autom. Lett. 3(1), 226–233 (2018). https://doi.org/10.1109/LRA.2017.2737486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Yang, C. (2020). A Hybrid Human Motion Prediction Approach for Human-Robot Collaboration. In: Ju, Z., Yang, L., Yang, C., Gegov, A., Zhou, D. (eds) Advances in Computational Intelligence Systems. UKCI 2019. Advances in Intelligent Systems and Computing, vol 1043. Springer, Cham. https://doi.org/10.1007/978-3-030-29933-0_7

Download citation

Publish with us

Policies and ethics