Skip to main content

Enabling Standard Geospatial Capabilities in Spark for the Efficient Processing of Geospatial Big Data

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2018)

Abstract

Nowadays, big data are in the midst of many scientific, economic and societal issues. While most of these data include a spatial component, very few big data processing systems are able to manage this particular component. The authors have assessed the capabilities and limits of current solutions and have concluded that most of them are neither efficient nor extensive enough for spatial data. Furthermore, none of them fully complies with ISO standards and OGC specifications in terms of spatial processing. The authors have sought a way to overcome these limitations and have defined a system in greater accordance with the ISO-19125 standard. The proposed solution, called Elcano, is an extension of Spark complying with ISO-19125, allowing the SQL querying of spatial data and including an original spatial indexation system. Tests demonstrate that Elcano surpasses current available solutions on the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aji, A., et al.: Hadoop GIS: a high-performance spatial data warehousing system over MapReduce. Proc. VLDB Endow. 6(11), 1009–1020 (2013)

    Article  Google Scholar 

  2. Akter, S., Wamba, S.F.: Big data analytics in E-commerce: a systematic review and agenda for future research. Electron. Markets 26(2), 173–194 (2016)

    Article  Google Scholar 

  3. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383–1394 (2015)

    Google Scholar 

  4. Badard, T.: Mettre le Big Data sur la carte: défis et avenues relatifs à l’exploitation de la localisation. In: Colloque ITIS - Big Data et Open Data au cœur de la ville intelligente, Québec (2014)

    Google Scholar 

  5. Bertin, J.: Semiologie Graphique: Les Diagrammes. Les Reseaux, Les Cartes (1967)

    Google Scholar 

  6. Bray, T.: The Javascript object notation (JSON) data interchange format, RFC 7158 (2014)

    Google Scholar 

  7. Commonwealth Computer Research: Apache Spark Analysis (2017). http://www.geomesa.org/documentation/tutorials/spark.html

  8. Cortés, R., et al.: A scalable architecture for spatio-temporal range queries over big location data. In: IEEE 14th International Symposium on Network Computing and Applications, pp. 159–166 (2015)

    Google Scholar 

  9. Davis, M., Aquino, J.: JTS topology suite technical specifications (2003)

    Google Scholar 

  10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  11. Eldawy, M., Mokbel, F.: A demonstration of SpatialHadoop: an efficient MapReduce framework for spatial data. In: VLDB Endowment (2013)

    Article  Google Scholar 

  12. Eldawy, M., Mokbel, F.: Pigeon: a spatial MapReduce language. In: 30th International Conference on IEEE Data Engineering, pp. 1242–1245 (2014)

    Google Scholar 

  13. Eldawy, M., Mokbel, F.: The era of big spatial data: a survey. Inf. Media Technol. 10(2), 305–316 (2015)

    Google Scholar 

  14. Engélinus, J., Badard, T.: Towards a real-time thematic mapping system for streaming big data. GIScience, Montreal (2016)

    Google Scholar 

  15. Engélinus, J., Badard, T.: Elcano: a geospatial Big data processing system based on SparkSQL. GISTAM, Funchal (2017)

    Google Scholar 

  16. Evans, M.R., et al.: Spatial big data. In: Big Data: Techniques and Technologies in Geoinformatics, p. 149 (2014)

    Chapter  Google Scholar 

  17. Fabrikant, S.I., Goldsberry, K.: Thematic relevance and perceptual salience of dynamic geovisualization displays. In: 22th ICA/ACI International Cartographic Conference, Coruna (2005)

    Google Scholar 

  18. Fellah, A.: Une Approche Scalable pour le Traitement de Grande Quantité de Données (Doctoral dissertation) (2016)

    Google Scholar 

  19. Fermigier, S.: Big data et open source: une convergence inévitable? (2011). http://projet-plume.org

  20. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys. Acta Informatica 4(1), 1–9 (1974)

    Article  Google Scholar 

  21. Franklin, C., Hane, P.: An introduction to geographic information systems: linking maps to databases [and] maps for the rest of us: affordable and fun. Database 15(2), 12–15 (1992)

    Google Scholar 

  22. Gamma, E., et al.: Design Patterns: Elements of Reusable Object-Oriented Software (1994)

    Google Scholar 

  23. Gantz, J., Reinsel, D.: The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. In: IDC iView: IDC Analyze the Future 2007, pp. 1–16 (2012)

    Google Scholar 

  24. Golab, L.: Sliding window query processing over data streams. Doctorate thesis. University of Waterloo (2006)

    Google Scholar 

  25. Gu, L., Li, H.: Memory or time: performance evaluation for iterative operation on Hadoop and Spark. In: High Performance Computing and Communications & IEEE 10th International Conference on Embedded and Ubiquitous Computing, pp. 721–727 (2013)

    Google Scholar 

  26. Guttman, A.: R-trees: a dynamic index structure for spatial searching. ACM SIGMOD Rec. 14(2), 47 (1984)

    Article  Google Scholar 

  27. Hugues, J.N., et al.: GeoMesa: a distributed architecture for spatio-temporal fusion. In: SPIE Defense+Security, p. 94730F. International Society for Optics and Photonics (2015)

    Google Scholar 

  28. ISO 19125-1: Geographic information-Simple feature access – Part 1: Common architecture. ISO/TC 211, 42 p. (2004). https://www.iso.org/standard/40114.html

  29. ISO 19125-2: Geographic information-Simple feature access - Part 2: SQL option. ISO/TC 211, 61 p. (2004). https://www.iso.org/standard/40115.html

  30. Knoll, A., et al.: Interactive isosurface ray tracing of large octree volumes. In: IEEE Symposium on Interactive Ray Tracing, pp. 115–124 (2006)

    Google Scholar 

  31. MacEachren, M.: An evolving cognitive-semiotic approach to geographic visualization and knowledge construction. Inf. Des. J. 10(1), 26–36 (2001)

    Google Scholar 

  32. Maciejewsky, R., et al.: A visual analytics approach to understanding spatiotemporal hotspots. IEEE Trans. Visual Comput. Graph. 16(2), 205–220 (2010)

    Article  Google Scholar 

  33. Manyika, J., et al.: Big data: the next frontier for innovation, competition, and productivity. The McKinsey Global Institute (2011)

    Google Scholar 

  34. McAfee, A., et al.: Big data: the management revolution. Harvard Bus. Rev. 90(10), 60–68 (2012)

    Google Scholar 

  35. Mericksay, B., Roche, S.: Cartographie numérique en ligne nouvelle génération: impacts de la néogéographie et de l’information géographique volontaire sur la gestion urbaine participative. In: Nouvelles cartographie, nouvelles villes, HyperUrbain (2010)

    Google Scholar 

  36. Niemeyer, G.: Geohash (2008). http://geohash.org

  37. Nievergelt, J., et al.: The grid file: an adaptable, symmetric multikey file structure. ACM Trans. Database Syst. (TODS) 9(1), 38–71 (1984)

    Article  Google Scholar 

  38. Obe, R.O., Hsu, L.S.: PostGIS in Action. Manning Publications Co., Greenwich (2015)

    Google Scholar 

  39. Ram, S.: Magellan: geospatial analytics on spark (2015). http://hortonworks.com/blog/magellan-geospatial-analytics-in-spark/

  40. Sriharasha, R.: Magellan’s Github - issue 30 (2016). https://github.com/harsha2010/magellan/issues

  41. Van, L.H., Takasu, A.: An efficient distributed index for geospatial databases. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 28–42. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22849-5_3

    Chapter  Google Scholar 

  42. Vlissides, J., et al.: Design Patterns: Elements of Reusable Object-Oriented Software, p. 11. Addison-Wesley, Reading (1995). 49.120

    Google Scholar 

  43. Vorha, D.: Apache parquet. In: Practical Hadoop Ecosystem, pp. 325–335. Apress, Berkeley (2016)

    Google Scholar 

  44. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Inc., Sebastopol (2012)

    Google Scholar 

  45. Xie, D., et al.: Simba: efficient in-memory spatial analytics (2016). https://www.cs.utah.edu/~lifeifei/papers/simba.pdf

  46. You, S., et al.: Large-scale spatial join query processing in cloud. In: 31st IEEE International Conference on Data Engineering Workshops (ICDEW), pp. 34–41 (2015)

    Google Scholar 

  47. Yu, J.: GeoSpark’s Github - issue 33 (2017). https://github.com/DataSystemsLab/GeoSpark/issues

  48. Yu, J., et al.: Geospark: a cluster computing framework for processing large-scale spatial data. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 70 (2015)

    Google Scholar 

  49. Zaharia, M., et al.: Spark: cluster computing with working sets. In: 2nd USENIX Conference on Hot Topics in Cloud Computing, vol. 10, p. 10 (2010)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Council of Cana-da (NSERC), funding reference number 327533. We also thank Université Laval and especially the Center for Research in Geomatics (CRG) and the Faculty of Forestry, Geography and Geomatics for their support and their funding. Thanks to, Eveline Bernier, Cecilia Inverardi and Pierrot Seban for their thorough proof reading in the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Badard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engélinus, J., Badard, T., Bernier, É. (2019). Enabling Standard Geospatial Capabilities in Spark for the Efficient Processing of Geospatial Big Data. In: Ragia, L., Grueau, C., Laurini, R. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2018. Communications in Computer and Information Science, vol 1061. Springer, Cham. https://doi.org/10.1007/978-3-030-29948-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29948-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29947-7

  • Online ISBN: 978-3-030-29948-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics