Skip to main content

Incentives for Harvesting Attack in Proof of Work Mining Pools

  • Conference paper
  • First Online:
Computer Security – ESORICS 2019 (ESORICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11735))

Included in the following conference series:

Abstract

PoW consensus largely depends on mining that mostly happens in the pools where Pay Per Share (PPS) and Pay Per Last N Shares (PPLNS) are the most common reward schemes that are offered to the affiliated miners by pool managers. In this paper, we demonstrate that in the system consisting of PPS and PPLNS pools, manager who governs the both pools may have incentive for a new type of “pool harvesting” attack that is harmful for honest miners. In order to profit from the attack on PPLNS pool manager declares that a non-existent miner A joins that pool. She then collects the portion of reward that corresponds to the mining power of the proclaimed miner A. We demonstrate that for the mining community, such unfavorable outcome is worsened by the manager incentives to misrepresent (or not report) the true power of PPS pools, which complicates unified estimation of the level of decentralization in blockchain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Moment \(t_-\) is defined as \(t_- = \lim \limits _{\Updelta t\rightarrow 0}{( t-\Updelta t)}\).

  2. 2.

    We use notations \(P^*_1\) and \(\mathbf {PPS}, \;|\mathbf {PPS}|=n\) to designate the power and the set of events in PPS pool that are declared by the manager.

References

  1. Angner, E.: A Course in Behavioral Economics. Palgrave Macmillan, New York (2012)

    Google Scholar 

  2. Antpool: Statistics (2019). https://www.antpool.com/poolStats.htm

  3. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 285–305. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8_16

    Chapter  Google Scholar 

  4. Bag, S., Ruj, S., Sakurai, K.: Bitcoin block withholding attack: analysis and mitigation. IEEE Trans. Inf. Forensics Secur. 12(8), 1967–1978 (2017)

    Article  Google Scholar 

  5. BITMEX: Trading on BitMEX (2019). https://www.bitmex.com/app/tradingOverview

  6. BlockFi: Earn a 6.2% Annual Yield on Your Crypto (2019). https://blockfi.com/crypto-interestaccount/

  7. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Velner, Y.: Ergodic mean-payoff games for the analysis of attacks in crypto-currencies. In: 29th International Conference on Concurrency Theory (CONCUR 2018), pp. 11:1–11:17. Schloss Dagstuhl. Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  8. Chávez, J.J.G., Silva Rodrigues, C.K. da: Automatic hopping among pools and distributed applications in the Bitcoin network. In: 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), pp. 1–7 (2016)

    Google Scholar 

  9. Coinlend: Automated Margin Lending: A Possibility for Passive Income with Cryptocurrencies. Press Release (2018)

    Google Scholar 

  10. Courtois, N.T., Emirdag, P., and Wang, Z.: On detection of Bitcoin mining redirection attacks. In: ICISSP 2015 - Proceedings, pp. 98–105. SciTePress (2015)

    Google Scholar 

  11. Explorer, B.: Block Explorer (2019). https://www.blockchain.com/explorer

  12. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy, pp. 89–103 (2015)

    Google Scholar 

  13. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)

    Article  Google Scholar 

  14. Fisch, B., Pass, R., Shelat, A.: Socially optimal mining pools. In: Devanur, N.R., Lu, P. (eds.) WINE 2017. LNCS, vol. 10660, pp. 205–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71924-5_15

    Chapter  Google Scholar 

  15. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_10

    Chapter  Google Scholar 

  16. Gervais, A., Karame, G.O., WüNust, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference, CCS ’16, pp. 3–16. ACM (2016)

    Google Scholar 

  17. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bitcoin. In: ACM CCS 2012 - Proceedings, pp. 906–917. ACM (2012)

    Google Scholar 

  18. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior in Bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst. Secur. 18(1), 2:1–2:32 (2015)

    Article  Google Scholar 

  19. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: Proceedings of WEIS, p. 11 (2013)

    Google Scholar 

  20. Kuchta, V., Zolotavkin, Y.: Detection constraint for Harvesting Attack in Proof of Work mining pools (2019). https://doi.org/10.26180/5d2464e40a00d

  21. Liu, H., Ruan, N., Du, R., Jia, W.: On the strategy and behavior of Bitcoin mining with N-attackers. In: ASIACCS 2018, Proceedings, pp. 357–368. ACM (2018)

    Google Scholar 

  22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  23. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish mining and combining with an eclipse attack. In: 2016 IEEE European Symposium on Security and Privacy (EuroS P), pp. 305–320 (2016)

    Google Scholar 

  24. von Neumann, J., Morgenstern, O., Kuhn, H., Rubinstein, A.: Theory of Games and Economic Behavior: 60th Anniversary, Commemorative edn. Princeton University Press (2007)

    Google Scholar 

  25. P2Pool: P2Pool Bitcoin Mining Pool Global Statistics (2018). http://p2pool.org/stats/index.php. Accessed 19 March 2018

  26. Qin, R., Yuan, Y., Wang, S., Wang, F.: Economic issues in Bitcoin mining and blockchain research. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 268–273 (2018)

    Google Scholar 

  27. Rosenfeld, M.: Analysis of Bitcoin Pooled Mining Reward Systems. arXiv preprint arXiv:1112.4980 (2011)

  28. Smith, A.: An Inquiry Into the Nature and Causes of the Wealth of Nations. Simon & Brown, New York (2011)

    Google Scholar 

  29. Smith, D.: Reliability, Maintainability and Risk: Practical Methods for Engineers including Reliability Centred Maintenance and Safety-Related Systems. Elsevier Science, New York (2011)

    Google Scholar 

  30. Weerahandi, S.: Exact Statistical Methods for Data Analysis. Springer, New York (2003)

    MATH  Google Scholar 

  31. Zolotavkin, Y., García, J., Rudolph, C.: Incentive compatibility of pay per last n shares in Bitcoin mining pools. In: Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds.) Decision and Game Theory for Security, vol. 10575, pp. 21–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68711-7_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevhen Zolotavkin .

Editor information

Editors and Affiliations

Appendices

A Theorems

Theorem 1

Let \(M^*\) denote a malicious manager of PPS and PPLNS pools. If \(W_{M^*}(t_{\mathcal {T}})>W_{M}(t_{\mathcal {T}})\) then the manager is incentivized to perform a harvesting attack over her pools.

Proof

Because of the requirement \(U'\big (W\big )>0\) we state that under \(W_{M^*}(t_{\mathcal {T}})>W_M(t_{\mathcal {T}})\) we have \(U\big (W_{M^*}(t_{\mathcal {T}})\big )>U\big (W_M(t_{\mathcal {T}})\big )\). Finally, we state that

$$ E\bigg [U\Big ( W_{M^*}\big ( t\big )\Big )\bigg ] > E\bigg [U\Big ( W_{M}\big ( t\big )\Big )\bigg ]\, . $$

   \(\square \)

Theorem 2

At any continuous time \(t\le t_{\mathcal {T}}\) proposed method for attack guarantees validity of condition

$$ \sum \limits _{j\in \mathbb {M}^{t}}{R_{j}F_A\big (t_{j}\big )f\bigl (t - t_0\bigr )} > \sum \limits _{k\in \mathbb {A}^{t}}{R_{k}\Big ( 1- F_A\big (t\big )\Big )f\bigl (t - t_0\bigr )} $$

under exponential discounting function \(f\bigl (t - t_0\bigr )=e^{-k(t-t_0)}\).

Proof

The proposed method of attack always guarantees validity of (9). We perform the proof of this theorem using induction proof technique. Let us denote the last event that happened in \(\mathbb {A}\cup \mathbb {M}\) prior t as \(t_e\). We then express the questioned inequality as

$$\begin{aligned} \sum \limits _{j\in \mathbb {M}^{t}}{R_{j}F_A\big (t\big )f\bigl (t-t_e+t_e- t_0\bigr )} > \sum \limits _{k\in \mathbb {A}^{t}}{R_{k}\Big ( 1- F_A\big (t\big )\Big )f\bigl (t -t_e+t_e -t_0\bigr )}\, . \end{aligned}$$
(14)

Since \(F_A\big (t\big )\) is non-decreasing it is sufficient to demonstrate that

$$\begin{aligned} \sum \limits _{j\in \mathbb {M}^{t}}{R_{j}F_A\big (t_e\big )f\bigl (t-t_e+t_e- t_0\bigr )} > \sum \limits _{k\in \mathbb {A}^{t}}{R_{k}\Big ( 1- F_A\big (t_e\big )\Big )f\bigl (t -t_e+t_e -t_0\bigr )}\, . \end{aligned}$$
(15)

Claim: There exists a homomorphic function which satisfies the following relation:

$$ f(t-t_e+t_e-t_0)=f(t-t_e)\odot f(t_e-t_0), $$

where \(\odot \) denotes a homomorphic operation. This claim is true if we chose \(f(t-t_0)=e^{-k(t-t_0)}\) and \(\odot \) be a multiplicative operation. Then the condition in (16) is equivalent to

$$\begin{aligned} f(t_e-t_0)\odot \sum \limits _{j\in \mathbb {M}^{t}}{R_{j}F_A\big (t_e\big )f\bigl (t-t_e\bigr )} > f(t_e-t_0)\odot \sum \limits _{k\in \mathbb {A}^{t}}{R_{k}\Big ( 1- F_A\big (t_e\big )\Big )f\bigl (t -t_e\bigr )}\, . \end{aligned}$$
(16)

Canceling out \(f(t_e-t_0)\) yields \(\sum \limits _{j\in \mathbb {M}^{t}}{R_{j}F_A\big (t_e\big )f\bigl (t-t_e\bigr )} > \sum \limits _{k\in \mathbb {A}^{t}}{R_{k}\Big ( 1- F_A\big (t_e\big )\Big )}\)\({f\bigl (t -t_e\bigr )}\).    \(\square \)

B Lemma

Lemma 1

Under exponential discounting, manager reveals set \(\mathbb {L}\) only if condition

$$\begin{aligned} \Bigg (\frac{\mu _R}{\big ( 1-\phi _1\big ) \tilde{R}}-1\Bigg )\big | \mathbb {L}^{t_{\mathcal {T}}}\big |>\big | \mathbb {A}^{t_{\mathcal {T}}}\big | \end{aligned}$$
(13)

is satisfied.

Proof

In the system of PPS and PPLNS pools, manager makes a binary decision \(\mathcal {B}\in \{0,1\}\) that maximizes \(E\bigg [ U\Big ( \mathcal {B}\cdot W^1_M\big ( t_{\mathcal {T}}\big ) +W^2_M\big ( t_{\mathcal {T}}\big )\Big )\bigg ]\). First, \(\mathcal {B}=1\) only if \(E\Big [W^1_M\big ( t_{\mathcal {T}}\big )\Big ]>0\). In acc. to M-V analysis \(E\bigg [U\Big ( W^1_M\big ( t_{\mathcal {T}}\big ) +W^2_M\big ( t_{\mathcal {T}}\big )\Big )\bigg ] \ge E\Big [W^2_M\big ( t_{\mathcal {T}}\big )\Big ]\) requires that either :

$$\begin{aligned} E\Big [W^1_M\big ( t_{\mathcal {T}}\big ) +W^2_M\big ( t_{\mathcal {T}}\big )\Big ]\ge E\Big [W^2_M\big ( t_{\mathcal {T}}\big )\Big ] \; \mathrm {OR}\;var\Big ( W^1_M\big ( t_{\mathcal {T}}\big ) +W^2_M\big ( t_{\mathcal {T}}\big )\Big )\le var\Big ( W^2_M\big ( t_{\mathcal {T}}\big )\Big ). \end{aligned}$$

Further, we consider the first cond. since the second inequality is impossible to satisfy. Because \(W^1_M\big ( t_{\mathcal {T}}\big )\) and \(W^2_M\big ( t_{\mathcal {T}}\big )\) are independent, we demand \(E\Big [W^1_M\big ( t_{\mathcal {T}}\big )\Big ]>0\, .\) Let us substituteFootnote 2 expression for \(W^1_M\big ( t_{\mathcal {T}}\big )\) from Eq. (5):

$$\begin{aligned} \begin{aligned} E\Big [W_{M}^1(t_{\mathcal {T}})\Big ]=E\Bigg [\!\!\sum \limits _{i\in \mathbf {PPS}}\!\!\!{R_{i}f\bigl (t_{i} - t_0\bigr )}-\bigl ( 1-\phi _1\bigr )\frac{\tilde{R}P^*_1}{E_B}\int \limits _{t_0}^{t_{\mathcal {T}}}{f\bigl ( t-t_0\bigr )\mathrm {d}t}\Bigg ]>0\;\Rightarrow \\ \Rightarrow E\Bigg [\!\!\sum \limits _{i\in \mathbf {PPS}}\!\!\!{R_{i}f\bigl (t_{i} - t_0\bigr )}\Bigg ]>\bigl ( 1-\phi _1\bigr )\frac{\tilde{R}P^*_1}{E_B}\int \limits _{t_0}^{t_{\mathcal {T}}}{f\bigl ( t-t_0\bigr )\mathrm {d}t}\, . \end{aligned} \end{aligned}$$
(17)

with the right-hand side of this inequality being constant. In the left-hand side of (17) we observe that

$$\begin{aligned} E\Bigg [\!\sum \limits _{i\in \mathbf {PPS}}\!\!\!{R_{i}f\bigl (t_{i} - t_0\bigr )}\Bigg ]=\!\!\sum \limits _{i\in \mathbf {PPS}}\!\!\!{E\Big [ R_{i}f\bigl (t_{i} - t_0\bigr )\Big ]}=\!\mu _R\!\sum \limits _{i\in \mathbf {PPS}}\!{E\Big [e^{-k(t_{i} - t_0)}\Big ]} \end{aligned}$$
(18)

because variables \(R_i\) and \(t_i\), \(i\in \mathbf {PPS}\), are mutually independent and \(E[R_i]=\mu _R\). We introduce \(\big \{z_j\big \}:=\big \{ t_{i_j} - t_{i_j-1}\big \}\), \(2\le j\le n\). We further notice that

$$\begin{aligned} \!\!\sum \limits _{i\in \mathbf {PPS}}\!\!\!{E\Big [e^{-k(t_i - t_0)}\Big ]}=\!\!\sum \limits _{j=2}^{n}\!{E\Bigg [\prod \limits _{l=2}^{j} {e^{-kz_l}}\Bigg ]}. \end{aligned}$$
(19)

According to PoW mining principle, variable z is i.i.d and, hence, Eq. (19) yields

$$\begin{aligned} \sum \limits _{j=2}^{n}\!{E\Bigg [\prod \limits _{l=2}^{j} {e^{-kz_l}}\Bigg ]}=\sum \limits _{j=2}^{n}\!{\prod \limits _{l=2}^{j} {E\Big [e^{-kz(l-1)}\Big ]}}=\frac{1-\bigg (E\Big [e^{-kz}\Big ]\bigg )^{n}}{1-E\Big [e^{-kz}\Big ]}E\Big [e^{-kz}\Big ]\,, \end{aligned}$$
(20)

where the last equation on the right side of the Eq. (20) follows from geometric series (\(\sum _{i=1}^{n}q^i=\frac{1-q^{n}}{1-q}q\) if we set \(q=e^{-kz}<1\)). Random variable z can be described by it’s density function \(d(z)=\lambda _m e^{-\lambda _m z}\). Then

$$\begin{aligned} E\Big [e^{-kz}\Big ]=\int \limits _{0}^{\infty }f(z)d(z)\mathrm {d}(z)=\lambda _m\int \limits _{0}^{\infty }{e^{-z\big ( k+\lambda _m\big )}\mathrm {d}z}=\frac{\lambda _m}{k+\lambda _m}. \end{aligned}$$
(21)

Now, using result from (19)–(21), the last expression in Eq. (18) is:

$$\begin{aligned} \mu _R\!\sum \limits _{i\in \mathbf {PPS}}\!{E\Big [e^{-k(t_{i} - t_0)}\Big ]}=\mu _R\frac{1-\bigg (\frac{\lambda _m}{k+\lambda _m}\bigg )^{n}}{1-\frac{\lambda _m}{k+\lambda _m}}\frac{\lambda _m}{k+\lambda _m}=\mu _R\frac{\lambda _m}{k}\Bigg (1-\Bigg (\frac{\lambda _m}{k+\lambda _m}\Bigg )^{n}\Bigg )\,. \end{aligned}$$
(22)

For the right-hand side of (17) and the exponential time-discounting \(f(t-t_0)=e^{-k(t-t_0)}\) we have

$$\begin{aligned} \bigl ( 1-\phi _1\bigr )\frac{\tilde{R}P^*_1}{E_B}\int \limits _{t_0}^{t_{\mathcal {T}}}{f\bigl ( t-t_0\bigr )\mathrm {d}t}=\bigl ( 1-\phi _1\bigr )\frac{\tilde{R}P^*_1}{k E_B}\Bigg ( 1-e^{-k\big ( t_{\mathcal {T}}-t_0\big )}\Bigg ). \end{aligned}$$
(23)

Without loss of generality we note that \(\lambda _m=\frac{n}{t_{\mathcal {T}}-t_0}\). As a result, we rewrite Eq. (17) as

$$\begin{aligned} \mu _R\frac{\lambda _m}{k}\Bigg (1-\bigg (\frac{\lambda _m}{k+\lambda _m}\bigg )^{n}\Bigg )\overset{?}{>} (1-\phi _1)\frac{\tilde{R}P_1^*}{kE_B}\Bigg (1-e^{-k\frac{n}{\lambda _m}}\Bigg )\, . \end{aligned}$$
(24)

Let us compare components \(1-\bigg (\frac{\lambda _m}{k+\lambda _m}\bigg )^{n}\) and \(1-e^{-k\frac{n}{\lambda _m}}\) in the expressions for the left-and-right-hand sides of Eq. (24), respectively. We apply Taylor expansion to the function \(e^{k/\lambda _m}\) and derive that \(e^{\frac{k}{\lambda _m}}>1+\frac{k}{\lambda _m}\), meaning that

$$\begin{aligned} 1-\bigg (\frac{\lambda _m}{k+\lambda _m}\bigg )^{n}<1-e^{-k\frac{n}{\lambda _m}}\, , \end{aligned}$$
(25)

which dictates the following necessary condition:

$$\begin{aligned} \mu _R\frac{\lambda _m}{k}> (1-\phi _1)\frac{\tilde{R}P_1^*}{kE_B}\, . \end{aligned}$$
(26)

Alternatively, replacing \(\lambda _m=\frac{n}{t_{\mathcal {T}}-t_0}\) we obtain necessary condition for (17):

$$\begin{aligned} \frac{n E_B}{\big (t_{\mathcal {T}}-t_0\big ) P^*_1}>\bigl ( 1-\phi _1\bigr )\frac{\tilde{R}}{\mu _R}. \end{aligned}$$
(27)

In the left side of (27), numerator represents expected amount of energy that is required to produce set of events \(\mathbf {PPS}\). Denominator expresses the actual energy that is spent in PPS pool by its miners. An obvious observation from the right-hand side of (27) is that inequality can be easier satisfied for larger mining fee \(\phi _1\) and higher transaction fees (which define \(\mu _R\)) in BitCoin network.

In case of pool harvesting attack manager can only report \(\mathbf {PPS}=\mathbb {L}^{t_{\mathcal {T}}}\) events versus \(\mathbb {L}^{t_{\mathcal {T}}}\cup \mathbb {A}^{t_{\mathcal {T}}}\) that can be reported by honest manager. We assume that miners of PPS pool communicate with each other and collectively estimate the total power of PPS pool as \(P^*_1=E_B\frac{\big | \mathbb {L}^{t_{\mathcal {T}}}\big |+\big | \mathbb {A}^{t_{\mathcal {T}}}\big |}{t_{\mathcal {T}}-t_0}\). Substituting this into (27) produces

$$\begin{aligned} \Bigg (\frac{\mu _R}{\big ( 1-\phi _1\big ) \tilde{R}}-1\Bigg )\big | \mathbb {L}^{t_{\mathcal {T}}}\big |>\big | \mathbb {A}^{t_{\mathcal {T}}}\big |\,. \end{aligned}$$

   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zolotavkin, Y., Kuchta, V. (2019). Incentives for Harvesting Attack in Proof of Work Mining Pools. In: Sako, K., Schneider, S., Ryan, P. (eds) Computer Security – ESORICS 2019. ESORICS 2019. Lecture Notes in Computer Science(), vol 11735. Springer, Cham. https://doi.org/10.1007/978-3-030-29959-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29959-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29958-3

  • Online ISBN: 978-3-030-29959-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics