Skip to main content

Breakdown Resilience of Key Exchange Protocols: NewHope, TLS 1.3, and Hybrids

  • Conference paper
  • First Online:
Computer Security – ESORICS 2019 (ESORICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11736))

Included in the following conference series:

Abstract

Broken cryptographic algorithms and hardness assumptions are a constant threat to real-world protocols. Prominent examples are hash functions for which collisions become known, or number-theoretic assumptions which are threatened by advances in quantum computing. Especially when it comes to key exchange protocols, the switch to quantum-resistant primitives has begun and aims to protect today’s secrets against future developments, moving from common Diffie–Hellman-based solutions to Learning-With-Errors-based approaches, often via intermediate hybrid designs.

To this date there exists no security notion for key exchange protocols that could capture the scenario of breakdowns of arbitrary cryptographic primitives to argue security of prior or even ongoing and future sessions. In this work we extend the common Bellare–Rogaway model to capture breakdown resilience of key exchange protocols. Our extended model allows us to study security of a protocol even in case of unexpected failure of employed primitives, may it be number-theoretic assumptions, hash functions, signature schemes, key derivation functions, etc. We then apply our security model to analyze two real-world protocols, showing that breakdown resilience for certain primitives is achieved by both an authenticated variant of the post-quantum secure key encapsulation mechanism \(\textsc {NewHope} \) (Alkim et al.) which is a second round candidate in the Post Quantum Cryptography standardization process by NIST, as well as by TLS 1.3, which has recently been standardized as RFC 8446 by the Internet Engineering Task Force.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We here use the formalization by Dowling et al. [24] from their analysis of TLS 1.3 candidate handshakes in the multi-stage key exchange setting.

  2. 2.

    In terms of our model, the \(\mathsf {Break} \) oracle would on input a prefix b and hash value h provide the adversary with a random preimage d such that \(\mathsf {Hash}(a ||b ||c ||d ||e) = h\), where ace are fixed strings (in this case matching the \(\mathtt {CH}\) and \(\mathtt {SH}\) message structure). Note this exemplifies a restricted, weaker \(\mathsf {Break} \) oracle than the conseratively strong collision oracle from Table 3 we used for proving (EC)DHE breakdown resilience.

References

  1. Adrian, D., et al.: Imperfect forward secrecy: how Diffie-Hellman fails in practice. In: ACM CCS 2015, pp. 5–17 (2015)

    Google Scholar 

  2. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.: On the security of RC4 in TLS. In: USENIX Security 2013, pp. 305–320 (2013)

    Google Scholar 

  3. Alkim, E., et al.: NewHope: algorithm specifications and supporting documentation (2019). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/NewHope-Round2.zip. Accessed 24 Apr 2019

  4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconciliation. Cryptology ePrint Archive, Report 2016/1157 (2016). http://eprint.iacr.org/2016/1157

  5. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: USENIX Security 2016, pp. 327–343 (2016)

    Google Scholar 

  6. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  7. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference implementations for the TLS 1.3 standard candidate. In: 2017 IEEE Symposium on Security and Privacy, pp. 483–502 (2017)

    Google Scholar 

  8. Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Zanella-Béguelin, S.: Downgrade resilience in key-exchange protocols. In: 2016 IEEE Symposium on Security and Privacy, pp. 506–525 (2016)

    Google Scholar 

  9. Bhargavan, K., Leurent, G.: Transcript collision attacks: breaking authentication in TLS, IKE and SSH. In: NDSS 2016 (2016)

    Google Scholar 

  10. Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., Stebila, D.: Hybrid key encapsulation mechanisms and authenticated key exchange. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 206–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_12

    Chapter  Google Scholar 

  11. Bos, J.W., et al.: Frodo: take off the ring! Practical, quantum-secure key exchange from LWE. In: ACM CCS 2016, pp. 1006–1018 (2016)

    Google Scholar 

  12. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy, pp. 553–570 (2015)

    Google Scholar 

  13. Bos, J.W., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. In: IEEE EuroS&P 2018, pp. 353–367 (2018)

    Google Scholar 

  14. Braithwaite, M.: Google security blog: experimenting with post-quantum cryptography (2016). https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html. Accessed 24 Apr 2019

  15. Brendel, J., Fischlin, M., Günther, F.: Breakdown resilience of key exchange protocols: NewHope, TLS 1.3, and hybrids. Cryptology ePrint Archive, Report 2017/1252 (2019). https://eprint.iacr.org/2017/1252

  16. Brzuska, C.: On the foundations of key exchange. Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany (2013). http://tuprints.ulb.tu-darmstadt.de/3414/

  17. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-Rogaway key exchange protocols. In: ACM CCS 2011, pp. 51–62 (2011)

    Google Scholar 

  18. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  19. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In: IEEE CSF 2016, pp. 164–178 (2016)

    Google Scholar 

  20. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehensive symbolic analysis of TLS 1.3. In: ACM CCS 2017, pp. 1773–1788 (2017)

    Google Scholar 

  21. Cremers, C., Horvat, M., Scott, S., van der Merwe, T.: Automated analysis and verification of TLS 1.3: 0-RTT, resumption and delayed authentication. In: 2016 IEEE Symposium on Security and Privacy, pp. 470–485 (2016)

    Google Scholar 

  22. den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_26

    Chapter  Google Scholar 

  23. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Cryptogr. 2(2), 107–125 (1992)

    Article  MathSciNet  Google Scholar 

  24. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol candidates. In: ACM CCS 2015, pp. 1197–1210 (2015)

    Google Scholar 

  25. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint Archive, Report 2016/081 (2016). http://eprint.iacr.org/2016/081

  26. Dowling, B., Stebila, D.: Modelling ciphersuite and version negotiation in the TLS protocol. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 270–288. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7_16

    Chapter  MATH  Google Scholar 

  27. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC protocol. In: ACM CCS 2014, pp. 1193–1204 (2014)

    Google Scholar 

  28. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: the case of the TLS 1.3 handshake candidates. In: IEEE EuroS&P 2017, pp. 60–75 (2017)

    Google Scholar 

  29. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Symposium on Security and Privacy, pp. 452–469 (2016)

    Google Scholar 

  30. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 190–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_7

    Chapter  Google Scholar 

  31. Giechaskiel, I., Cremers, C., Rasmussen, K.B.: On bitcoin security in the presence of broken cryptographic primitives. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 201–222. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_11

    Chapter  Google Scholar 

  32. Günther, C.G.: An identity-based key-exchange protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_5

    Chapter  Google Scholar 

  33. Gupta, S.S., Maitra, S., Paul, G., Sarkar, S.: (Non-)random sequences from (non-)random permutations - analysis of RC4 stream cipher. J. Cryptol. 27(1), 67–108 (2014)

    Article  Google Scholar 

  34. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_17

    Chapter  MATH  Google Scholar 

  35. Krawczyk, H.: A unilateral-to-mutual authentication compiler for key exchange (with applications to client authentication in TLS 1.3). In: ACM CCS 2016, pp. 1438–1450 (2016)

    Google Scholar 

  36. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1

    Chapter  MATH  Google Scholar 

  37. Langley, A.: ImperialViolet: CECPQ2 (2018). https://www.imperialviolet.org/2018/12/12/cecpq2.html. Accessed 24 Apr 2019

  38. Li, X., Xu, J., Zhang, Z., Feng, D., Hu, H.: Multiple handshakes security of TLS 1.3 candidates. In: 2016 IEEE Symposium on Security and Privacy, pp. 486–505 (2016)

    Google Scholar 

  39. NIST: Post-quantum cryptography standardization (2017). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization. Accessed 24 Apr 2019

  40. Paterson, K.G., van der Merwe, T.: Reactive and proactive standardisation of TLS. In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 160–186. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4_7

    Chapter  Google Scholar 

  41. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (2018)

    Google Scholar 

  42. Stevens, M.: New collision attacks on SHA-1 based on optimal joint local-collision analysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 245–261. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_15

    Chapter  Google Scholar 

  43. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first collision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 570–596. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_19

    Chapter  Google Scholar 

  44. Stevens, M., Karpman, P., Peyrin, T.: Freestart collision for full SHA-1. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 459–483. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_18

    Chapter  Google Scholar 

  45. Stevens, M., Lenstra, A., de Weger, B.: Chosen-prefix collisions for MD5 and colliding X.509 certificates for different identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_1

    Chapter  Google Scholar 

  46. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_2

    Chapter  Google Scholar 

  47. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_2

    Chapter  Google Scholar 

Download references

Acknowledgments

Felix Günther is supported in part by Research Fellowship grant GU 1859/1-1 of the DFG and National Science Foundation (NSF) grants CNS-1526801 and CNS-1717640. This work has been co-funded by the DFG as part of project S4 within the CRC 1119 CROSSING and as part of project D.2 within the RTG 2050 “Privacy and Trust for Mobile Users.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Brendel .

Editor information

Editors and Affiliations

A Auth-NewHope Protocol and TLS 1.3 Handshake Flow

A Auth-NewHope Protocol and TLS 1.3 Handshake Flow

The authenticated version of NewHope-Nist and the handshake flow of TLS 1.3 (in full/(EC)DHE, PSK, and PSK-(EC)DHE mode) are depicted in Fig. 4.

Fig. 4.
figure 4

The \(\textsc {Auth}\text {-}\textsc {NewHope} \) protocol with the KEM \(\mathsf {KEM}\) from NewHope-Nist above the double line and SIGMA-style authentication (left). The TLS 1.3 [41] handshake protocol in full/(EC)DHE, PSK, and PSK-(EC)DHE mode (right).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brendel, J., Fischlin, M., Günther, F. (2019). Breakdown Resilience of Key Exchange Protocols: NewHope, TLS 1.3, and Hybrids. In: Sako, K., Schneider, S., Ryan, P. (eds) Computer Security – ESORICS 2019. ESORICS 2019. Lecture Notes in Computer Science(), vol 11736. Springer, Cham. https://doi.org/10.1007/978-3-030-29962-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29962-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29961-3

  • Online ISBN: 978-3-030-29962-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics