IFIP Advances in Information and Communication Technology

566

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 – Foundations of Computer Science

Jacques Sakarovitch, Télécom ParisTech, France

TC 2 – Software: Theory and Practice

Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 - Education

Arthur Tatnall, Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications Erich J. Neuhold, University of Vienna, Austria

TC 6 - Communication Systems

Aiko Pras, University of Twente, Enschede, The Netherlands

TC 7 – System Modeling and Optimization Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems

Jan Pries-Heje, Roskilde University, Denmark

TC 9 - ICT and Society

David Kreps, University of Salford, Greater Manchester, UK

TC 10 – Computer Systems Technology

Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems Steven Furnell, Plymouth University, UK

TC 12 - Artificial Intelligence

Ulrich Furbach, University of Koblenz-Landau, Germany

TC 13 - Human-Computer Interaction

Marco Winckler, University of Nice Sophia Antipolis, France

TC 14 – Entertainment Computing

Rainer Malaka, University of Bremen, Germany

IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World Computer Congress held in Paris the previous year. A federation for societies working in information processing, IFIP's aim is two-fold: to support information processing in the countries of its members and to encourage technology transfer to developing nations. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims at achieving a worldwide professional and socially responsible development and application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It operates through a number of technical committees and working groups, which organize events and publications. IFIP's events range from large international open conferences to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and contributed papers are presented. Contributed papers are rigorously refereed and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working group and attendance is generally smaller and occasionally by invitation only. Their purpose is to create an atmosphere conducive to innovation and development. Refereeing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World Computer Congress and at open conferences are published as conference proceedings, while the results of the working conferences are often published as collections of selected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative Members, Members at Large, and Associate Members. The type of organization that can apply for membership is a wide variety and includes national or international societies of individual computer scientists/ICT professionals, associations or federations of such societies, government institutions/government related organizations, national or international research institutes or consortia, universities, academies of sciences, companies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

Farhad Ameri · Kathryn E. Stecke · Gregor von Cieminski · Dimitris Kiritsis (Eds.)

Advances in Production Management Systems

Production Management for the Factory of the Future

IFIP WG 5.7 International Conference, APMS 2019 Austin, TX, USA, September 1–5, 2019 Proceedings, Part I

Editors Farhad Ameri Texas State University San Marcos, TX, USA

Gregor von Cieminski D ZF Friedrichshafen AG Friedrichshafen, Germany Kathryn E. Stecke The University of Texas at Dallas Richardson, TX, USA

Dimitris Kiritsis D EPFL, SCI-STI-DK Lausanne, Switzerland

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-29999-6 ISBN 978-3-030-30000-5 (eBook)
https://doi.org/10.1007/978-3-030-30000-5

© IFIP International Federation for Information Processing 2019

The chapter "Empowering and Engaging Solutions for Operator 4.0 – Acceptance and Foreseen Impacts by Factory Workers" is Open Access. This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The revolution in the information and communication technology (ICT) is rapidly transforming our world. The manufacturing industry is not an exception and it has already gone through profound changes due to the technological advancements in information technology. The digitization of production systems has been the most influential trend in the manufacturing industry over the past few years. The concept of Cyber-physical Production System (CPPS) is now being increasingly adopted in various sectors of the manufacturing industry to promote further intelligence, connectivity, and responsiveness throughout in the product value chain. There are several enablers of the vision of digitized, cyber-enabled, sustainable, and smart production system, including big data analytics, artificial intelligence, virtual and augmented reality, digital twin, and Human-Machine Interaction (HMI). These are the key components of the fourth industrial revolution and the main research thrusts in smart manufacturing and Industry 4.0 research community. The core challenge is how to improve the effectives and efficiency of production systems and, at the same time, enhance their sustainability and intelligence. Also, redefining the role of human in the new generation of automated production systems is a major challenge faced by researchers and practitioners.

APMS 2019 in Austin, Texas brought together leading international experts from academia, industry, and government in the area of production systems to discuss globally pressing issues in smart manufacturing, operations management, supply chain management, and Industry 4.0. A large international panel of experts reviewed all the papers and selected the best ones to be included in these conference proceedings. The topics of interest in APMS 2019 included Smart Supply Networks, Knowledge-Based Product Development, Smart Factory and IIOT Data-Driven Production Management, Lean Production, and Sustainable Production Management.

The proceedings are organized in two parts:

- Production Management for the Factory of the Future (Volume 1)
- Towards Smart Production Management Systems (Volume 2)

The conference was supported by the International Federation of Information Processing (IFIP) and was organized by the IFIP Working Group 5.7 on Advances in Production Management Systems and Texas State University. We would like to thank all contributors for their high-quality work and for their willingness to share their innovative ideas and findings. We are also indebted to the members of the IFIP Working Group 5.7, the Program Committee members, and the Scientific Committee members for their support in the review of the papers. Finally, we appreciate the

vi Preface

generous support from our sponsors, namely, Texas State University - College of Science and Engineering, the University of Texas at Dallas - Naveen Jindal School of Management, AlphaNodus, and PennState Service Enterprise Engineering.

September 2019

Farhad Ameri Kathryn Stecke Gregor von Cieminski Dimitris Kiritsis

Organization

Conference Chair

Farhad Ameri Texas State University, USA

Conference Co-chair

Dimitris Kiritsis École polytechnique fédérale de Lausanne, Switzerland

Program Chair

Kathryn Stecke University of Texas at Dallas, USA

Program Co-chair

Gregor von Cieminski ZF Friedrichshafen AG, Germany

Program Committee

Albert Jones National Institute of Standards and Technology (NIST),

USA

Boonserm Kulvatunyou National Institute of Standards and Technology (NIST),

USA

Vital Prabhu The Pennsylvania State University, USA Kathryn Stecke University of Texas at Dallas, USA

(Committee Chair)

Thorsten Wuest West Virginia University, USA

Doctoral Workshop Co-chairs

Boonserm Kulvatanyou National Institute of Standards and Technology (NIST),

USA

Gregor von Cieminski ZF Friedrichshafen AG, Germany

International Advisory Committee

Dragan Djurdjanovic University of Texas at Austin, USA

Gül Kremer Iowa State University, USA

Ilkyeong Moon Seoul National University, South Korea
David Romero Tecnologico de Monterrey University, Mexico

Scientific Committee

Erry Yulian Triblas Adesta International Islamic University Malaysia, Malaysia Erlend Alfnes

Norwegian University of Science and Technology,

Norway

Thecle Alix IUT Bordeaux Montesquieu, France Susanne Altendorfer-Kaiser Montanuniversitaet Leoben, Austria

Texas State University, USA Farhad Ameri

Norwegian University of Science and Technology, Bjørn Andersen

Norway

Osaka University, Japan Eiji Arai Frédérique Biennier INSA Lyon, France

Umit S. Bititci Heriot Watt University, UK

Universidad Politécnica de Valencia, Spain Adriana Giret Boggino Université de Technologie de Compiègne, France Magali Bosch-Mauchand

Qatar University, Qatar Abdelaziz Bouras

Jim Browne University College Dublin, Ireland Universidade Nova de Lisboa, Portugal Luis Camarinha-Matos

Sergio Cavalieri University of Bergamo, Italy Plymouth University, UK Stephen Childe

Pohang University of Science & Technology, Hyunbo Cho

South Korea

ZF Friedrichshafen AG, Hungary Gregor von Cieminski Catherine Da Cunha Ecole Centrale de Nantes, France

Frédéric Demoly Université de Technologie de Belfort-Montbéliard,

France

Shengchun Deng Harbin Institute of Technology, China Melanie Despeisse Chalmers University of Technology, Sweden

IMT Atlantique Nantes, France Alexandre Dolgui Slavko Dolinšek University of Ljubljana, Slovenia Sungkyunkwan University, South Korea Sang Do Noh

Norwegian University of Science and Technology, Heidi Carin Dreyer

Norway

Helsinki University of Technology, Finland Eero Eloranta

Texelia AG, Switzerland Soumava El Kadiri Christos Emmanouilidis Cranfield University, UK Chalmers University, Sweden Åsa Fasth-Berglund Jan Frick University of Stavanger, Norway University of Bergamo, Italy Paolo Gaiardelli

INP-ENIT (National Engineering School of Tarbes), Bernard Grabot

France

Samuel Gomes Belfort-Montbéliard University of Technology, France Gerhard Gudergan FIR Research Institute for Operations Management,

Germany

Thomas R. Gulledge Jr. George Mason University, USA Tokyo University of Science, Japan Hironori Hibino

Hans-Henrik Hvolby Aalborg University, Denmark

Dmitry Ivanov Berlin School of Economics and Law, Germany Harinder Jagdev National University of Ireland at Galway, Ireland

John Johansen Aalborg University, Denmark Toshiya Kaihara Kobe University, Japan

Dimitris Kiritsis Ecole Polytechnique Fédérale de Lausanne,

Switzerland

Tomasz Koch Wrocław Universit of Science and Technology, Poland

Pisut Koomsap Asian Institute of Technology, Thailand

Gül Kremer Iowa State University, USA

Boonserm Kulvatunyou National Institute of Standards and Technology, USA

Thomas R. Kurfess Georgia Institute of Technology, USA

Andrew Kusiak University of Iowa, USA

Lenka Landryova Technical University of Ostrava, Czech Republic

Jan-Peter Lechner First Global Liaison, Germany Ming K. Lim Chongqing University, China

Hermann Lödding Hamburg University of Technology, Germany

Marco Macchi
Vidosav D. Majstorovich
Adolfo Crespo Marquez

Politecnico di Milano, Italy
University of Belgrade, Serbia
University of Seville, Spain

Gökan May Ecole Polytechnique Fédérale de Lausanne,

Switzerland

Jörn Mehnen Strathclyde University Glasgow, UK
Hajime Mizuyama Aoyama Gakuin University, Japan
Ilkyeong Moon Seoul National University, South Korea

Dimitris Mourtzis University of Patras, Greece Irenilza de Alencar Naas UNIP Paulista University, Brazil

Masaru Nakano Keio University, Japan Torbjörn Netland ETH Zürich, Switzerland

Gilles Neubert EMLYON Business School Saint-Etienne, France

Manuel Fradinho Duarte SINTEF, Norway

de Oliveira

Jinwoo Park Seoul National University, South Korea

François Pérès Université de Toulouse, France

Fredrik Persson Linköping Institute of Technology, Sweden

Selwyn Piramuthu University of Florida, USA Alberto Portioli-Staudacher Politecnico di Milano, Italy

Vittaldas V. Prabhu Pennsylvania State University, USA

Ricardo José Rabelo Federal University of Santa Catarina, Brazil

Mario Rapaccini Florence University, Italy

Joao Gilberto Mendes UNIP Paulista University, Brazil

dos Reis

Ralph Riedel TU Chemnitz, Germany

Asbjörn Rolstadås Norwegian University of Science and Technology,

Norway

David Romero Tecnologico de Monterrey University, Mexico

Organization

Х

Christoph Roser Karlsruhe University of Applied Sciences, Germany

Martin Rudberg Linköping University, Sweden Thomas E. Ruppli University of Basel, Switzerland

Krzysztof Santarek Warsaw University of Technology, Poland

John P. Shewchuk Virginia Polytechnic Institute and State University,

USA

Dan L. Shunk Arizona State University, USA Riitta Smeds Aalto University, Finland

Vijay Srinivasan National Institute of Standards and Technology, USA

Johan Stahre Chalmers University, Sweden
Kathryn E. Stecke University of Texas at Dallas, USA
Kenn Steger-Jensen Aalborg University, Denmark

Volker Stich FIR Research Institute for Operations Management,

Germany

Richard Lee Storch University of Washington, USA

Jan Ola Strandhagen Norwegian University of Science and Technology,

Norway

Stanislaw Strzelczak Warsaw University of Technology, Poland

Shigeki Umeda Musashi University, Japan Marco Taisch Politecnico di Milano, Italy

Kari Tanskanen Aalto University School of Science, Finland Ilias Tatsiopoulos National Technical University of Athens, Greece

Sergio Terzi Politecnico di Milano, Italy Klaus-Dieter Thoben Universität Bremen, Germany

Jacques H. Trienekens Wageningen University, The Netherlands Mario Tucci Universitá degli Studi di Firenze, Italy

Gündüz Ulusoy
Bruno Vallespir
Agostino Villa
Hans-Hermann Wiendahl
Joakim Wikner

Sabancı University, Turkey
University of Bordeaux, France
Politecnico di Torino, Italy
University of Stuttgart, Germany
Jönköping University, Sweden

Hans Wortmann University of Groningen, The Netherlands

Thorsten Wuest West Virginia University, USA

Iveta Zolotová Technical University of Košice, Slovakia

Contents – Part I

Lean Production

Total Quality Management and Quality Circles in the Digital Lean	_
Manufacturing World	3
Practical Boundary Case Approach for Kanban Calculation on the Shop Floor Subject to Variation	12
Options for Maintaining Weak FIFO in Parallel Queues	21
Sketching the Landscape for Lean Digital Transformation	29
Cyber-Physical Waste Identification and Elimination Strategies in the Digital Lean Manufacturing World	37
Using Prescriptive Analytics to Support the Continuous Improvement Process. Günther Schuh, Jan-Philipp Prote, Thomas Busam, Rafael Lorenz, and Torbjörn H. Netland	46
Lean Leadership in Production Ramp-Up	54
No Lean Without Learning: Rethinking Lean Production as a Learning System	62
The Effect of Team Size on the Performance of Continuous Improvement Teams: Is Seven Really the Magic Number? Daryl Powell and Rafael Lorenz	69
Lean and Digitalization—Contradictions or Complements?	77

Production Management in Food Supply Chains

Aguinaldo Eduardo de Souza, and Adriane Paulieli Colossetti	87
Port Logistic Support Areas (PLSA) for Exporting Grains: An Exploratory Case-Study in the Largest Port in Latin America	95
Sustainability of Meat Chain: The Carbon Footprint of Brazilian Consumers	102
Global Warming Impact in a Food Distribution System: A Case-Study in an Elementary School in Piaui	108
Broiler Meat Production in Piaui State: A Case Study	116
Collaborative Production Chains: A Case-Study of Two Agri-Food Companies in Brazil	123
An Evaluation of Brazilian Ports for Corn Export Using Multicriteria Analysis Aguinaldo Eduardo de Souza, João José Giardulli Junior, João Gilberto Mendes dos Reis, Ataide Pereira Cardoso Junior, Paula Ferreira da Cruz Correia, Ricardo Zandonadi Schimidt, José Benedito Sacomano, and Márcia Terra da Silva	129

CO₂ Gas Emissions of Soybean Production and Transportation

Marley Nunes Vituri Toloi, Rodrigo Carlo Toloi,

and Silvia Helena Bonilla

in the Different Macro-regions of Mato Grosso State - Brazil

Helton Raimundo Oliveira Silva, João Gilberto Mendes dos Reis,

187

Sustainability	and Reconf	figurability (of Manu	facturing (Systems
----------------	------------	----------------	---------	-------------	---------

Classification of Optical Technologies for the Mapping of Production Environments	197
Marius Greger, Daniel Palm, Louis Louw, and Konrad von Leipzig	27.
A DRC Scheduling for Social Sustainability: Trade-Off Between Tardiness and Workload Balance	206
Towards Reconfigurable Digitalized and Servitized Manufacturing Systems: Conceptual Framework	214
Simulation of Reconfigurable Assembly Cells with Unity3D	223
Decision Support System for Joint Product Design and Reconfiguration of Production Systems	231
Simple Assembly Line Balancing Problem with Power Peak Minimization	239
Modular Robot Software Framework for the Intelligent and Flexible Composition of Its Skills	248
A Competence-Based Description of Employees in Reconfigurable Manufacturing Systems	257
Product and Asset Life Cycle Management in Smart Factories of Industry 4.0	
Identification of the Inspection Specifications for Achieving Zero Defect Manufacturing	267
Risk Sources Affecting the Asset Management Decision-Making Process in Manufacturing: A Systematic Review of the Literature	274

Conceptual Framework for a Data Model to Support Asset Management Decision-Making Process	283
Hybrid Approach Using Ontology-Supported Case-Based Reasoning and Machine Learning for Defect Rate Prediction	291
Semantic Model-Driven PLM Data Interoperability: An Application for Aircraft Ground Functional Testing with Eco-Design Criteria	299
A Method for Converting Current Data to RDF in the Era of Industry 4.0 Marlène Hildebrand, Ioannis Tourkogiorgis, Foivos Psarommatis, Damiano Arena, and Dimitris Kiritsis	307
Total Cost of Ownership Driven Methodology for Predictive Maintenance Implementation in Industrial Plants	315
Ontology-Based Resource Allocation for Internet of Things Zeinab Nezami, Kamran Zamanifar, Damiano Arena, and Dimitris Kiritsis	323
Variety and Complexity Management in the Era of Industry 4.0	
Bringing Advanced Analytics to Manufacturing: A Systematic Mapping Hergen Wolf, Rafael Lorenz, Mathias Kraus, Stefan Feuerriegel, and Torbjørn H. Netland	333
Impact of Modeling Production Knowledge for a Data Based Prediction of Transition Times	341
Reconfigurable Manufacturing: A Classification of Elements Enabling Convertibility and Scalability	349
Industry 4.0 in SMEs: A Sectorial Analysis	357

Reconfigurable Manufacturing: A Case-Study of Reconfigurability Potentials in the Manufacturing of Capital Goods	366
A DSM Clustering Method for Product and Service Modularization Omar Ezzat, Khaled Medini, Maria Stoettrup Schioenning Larsen, Xavier Boucher, Thomas D. Brunoe, Kjeld Nielsen, and Xavier Delorme	375
Customization and Variants in Terms of Form, Place and Time Joakim Wikner and Fredrik Tiedemann	383
A Framework for Identification of Complexity Drivers	
in Manufacturing Companies	392
Identification of Platform Candidates Through Production System	
Classification Coding	400
5G-Ready in the Industrial IoT-Environment: Requirements and Needs	
for IoT Applications from an Industrial Perspective	408
Complexity Management in Production Systems: Approach for Supporting Problem Solving Through Holistic Structural Consideration Samuel Horler, Ralph Riedel, and Egon Müller	414
Participatory Methods for Supporting the Career Choices in Industrial Engineering and Management Education	
The Teaching of Engineers Focused on Innovative Entrepreneurship Danielle Miquilim and Marcia Terra da Silva	425
Research Initiative: Using Games for Better Career Choices	433
Blockchain in Supply Chain Management	
Blockchain as Middleware+	443
Towards a Blockchain Based Traceability Process: A Case Study	
from Pharma Industry	451

in ETO Companies	554
Purchasing Strategies, Tactics, and Activities in Engineer-to-Order Manufacturing	562
Examining Circular Economy Business Models for Engineer-to-Order Products	570
Digitalized Manufacturing Logistics in Engineer-to-Order Operations Jo Wessel Strandhagen, Sven-Vegard Buer, Marco Semini, and Erlend Alfnes	579
Aspects for Better Understanding of Engineering Changes in Shipbuilding Projects: In-Depth Case Study	588
Practical Guidelines for Production Planning and Control in HVLV Production	596
APS Feasibility in an Engineer to Order Environment	604
The Operator 4.0 and the Internet of Things, Services and People	
Empowering and Engaging Solutions for Operator 4.0 – Acceptance and Foreseen Impacts by Factory Workers	615
Task-Technology Fit in Manufacturing: Examining Human-Machine Symbiosis Through a Configurational Approach	624
Augmented Reality for Humans-Robots Interaction in Dynamic Slotting "Chaotic Storage" Smart Warehouses. Peter Papcun, Jan Cabadaj, Erik Kajati, David Romero, Lenka Landryova, Jan Vascak, and Iveta Zolotova	633
Analyzing Human Robot Collaboration with the Help of 3D Cameras Robert Glöckner, Lars Fischer, Arne Dethlefs, and Hermann Lödding	642

Contents - Part II

Smart	Supp	ly N	etwor	ks
-------	------	------	-------	----

The APMS Conference & IFIP WG5.7 in the 21st Century: A Bibliometric Study	1
Price Decision Making in a Centralized/Decentralized Solid Waste Disposal Supply Chain with One Contractor and Two Disposal Facilities Iman Ghalehkhondabi and Reza Maihami	17
Understanding the Impact of User Behaviours and Scheduling Parameters on the Effectiveness of a Terminal Appointment System Using Discrete Event Simulation	27
Full-Scale Discrete Event Simulation of an Automated Modular Conveyor System for Warehouse Logistics	35
Handling Uncertainties in Production Network Design Günther Schuh, Jan-Philipp Prote, Andreas Gützlaff, and Sebastian Henk	43
Supply Chain Scenarios for Logistics Service Providers in the Context of Additive Spare Parts Manufacturing	51
Supply Chain Optimization in the Tire Industry: State-of-the-Art	59
Collaborative Exchange of Cargo Truck Loads: Approaches to Reducing Empty Trucks in Logistics Chains Hans-Henrik Hvolby, Kenn Steger-Jensen, Mihai Neagoe, Sven Vestergaard, and Paul Turner	68
An Integrated Approach for Supply Chain Tactical Planning and Cash Flow Valuation	75
UAV Set Covering Problem for Emergency Network	84

A Stochastic Optimization Model for Commodity Rebalancing Under Traffic Congestion in Disaster Response	91
Optimal Supplier Selection in a Supply Chain with Predetermined Loading/Unloading Time Windows and Logistics Truck Share	100
Scheduling Auction: A New Manufacturing Business Model for Balancing Customization and Quick Delivery	109
Passenger Transport Disutilities in the US: An Analysis Since 1990s	118
Sustainability and Production Management	
Configuring the Future Norwegian Macroalgae Industry Using Life Cycle Analysis	127
Operationalizing Industry 4.0: Understanding Barriers of Industry 4.0 and Circular Economy	135
Business Model Innovation for Eco-Efficiency: An Empirical Study Yan Li and Steve Evans	143
Atmospheric Water Generation (AWG): Performance Model and Economic Analysis	151
Life Cycle Assessment for Ordinary and Frost-Resistant Concrete	159
Production Management Theory and Methodology	
Simulation Based Optimization of Lot Sizes for Opposing Logistic Objectives	171
A Proposal of Order Planning Method with Consideration of Multiple Organizations in Manufacturing System	180

Contents – Part II	xxiii
Reduction of Computational Load in Robust Facility Layout Planning Considering Temporal Production Efficiency	189
Decision-Making Process for Buffer Dimensioning in Manufacturing Lisa Hedvall and Joakim Wikner	196
Postponement Revisited – A Typology for Displacement	204
Efficient Heuristic Solution Methodologies for Scheduling Batch Processor with Incompatible Job-Families, Non-identical Job-Sizes and Non-identical Job-Dimensions	212
Optimizing Workflow in Cell-Based Slaughtering and Cutting of Pigs Johan Oppen	223
Increasing the Regulability of Production Planning and Control Systems Günther Schuh and Philipp Wetzchewald	231
Possibilities and Benefits of Using Material Flow Information to Improve the Internal Hospital Supply Chain	240
Medical Supplies to the Point-Of-Use in Hospitals	248
Combining the Inventory Control Policy with Pricing and Advertisement Decisions for a Non-instantaneous Deteriorating Product	256
Assessing Fit of Capacity Planning Methods for Delivery Date Setting: An ETO Case Study	265
Data-Driven Production Management	
From a Theory of Production to Data-Based Business Models	277
Real-Time Data Sharing in Production Logistics: Exploring Use Cases by an Industrial Study	285

Scenarios for the Development and Use of Data Products Within the Value Chain of the Industrial Food Production	294
Bidirectional Data Management in Factory Planning and Operation Uwe Dombrowski, Jonas Wullbrandt, and Alexander Karl	303
Open Access Digital Tools' Application Potential in Technological Process Planning: SMMEs Perspective	312
Industry 4.0 Implementations	
Implementation of Industry 4.0 in Germany, Brazil and Portugal: Barriers and Benefits	323
Planning Guideline and Maturity Model for Intra-logistics 4.0 in SME Knut Krowas and Ralph Riedel	331
Self-assessment of Industry 4.0 Technologies in Intralogistics for SME's Martina Schiffer, Hans-Hermann Wiendahl, and Benedikt Saretz	339
Industry 4.0 Visions and Reality- Status in Norway	347
Exploring the Impact of Industry 4.0 Concepts on Energy and Environmental Management Systems: Evidence from Serbian Manufacturing Companies	355
Smart Factory and HOT	
Virtualization of Sea Trials for Smart Prototype Testing	365
IoH Technologies into Indoor Manufacturing Sites	372
3D Visualization System of Manufacturing Big Data and Simulation Results of Production for an Automotive Parts Supplier Dahye Hwang and Sang Do Noh	381

Cyber-	Physical	l Systems
--------	----------	-----------

Blockchain as an Internet of Services Application for an Advanced	200
Manufacturing Environment	389
Development of a Modeling Architecture Incorporating the Industry 4.0 View for a Company in the Gas Sector	397
Process for Enhancing the Production System Robustness with Sensor Data – a Food Manufacturer Case Study	405
In-Process Noise Detection System for Product Inspection by Using Acoustic Data	413
Knowledge Management in Design and Manufacturing	
Closed-Loop Manufacturing for Aerospace Industry: An Integrated PLM-MOM Solution to Support the Wing Box Assembly Process	423
Modeling Manual Assembly System to Derive Best Practice from Actual Data	431
Application of a Controlled Assembly Vocabulary: Modeling a Home Appliance Transfer Line. Chase Wentzky, Chelsea Spence, Apurva Patel, Nicole Zero, Adarsh Jeyes, Alexis Fiore, Joshua D. Summers, Mary E. Kurz, and Kevin M. Taaffe	439
What Product Developers Really Need to Know - Capturing the Major Design Elements	447
Collaborative Product Development	
Design-for-Cost – An Approach for Distributed Manufacturing Cost Estimation	457
Minchul Lee and Boonserm (Serm) Kulvatunyou	

Computer-Aided Selection of Participatory Design Methods	466
Knowledge Management Environment for Collaborative Design in Product Development	475
A Multi-criteria Approach to Collaborative Product-Service Systems Design	481
ICT for Collaborative Manufacturing	
MES Implementation: Critical Success Factors and Organizational Readiness Model	493
Identifying the Role of Manufacturing Execution Systems in the IS Landscape: A Convergence of Multiple Types of Application Functionalities	502
A Generic Approach to Model and Analyze Industrial Search Processes Philipp Steenwerth and Hermann Lödding	511
A Methodology to Assess the Skills for an Industry 4.0 Factory Federica Acerbi, Silvia Assiani, and Marco Taisch	520
Collaborative Technology	
A Theoretical Approach for Detecting and Anticipating Collaboration Opportunities	531
The Systematic Integration of Stakeholders into Factory Planning, Construction, and Factory Operations to Increase Acceptance and Prevent Disruptions	539
Service Engineering Models: History and Present-Day Requirements Roman Senderek, Jan Kuntz, Volker Stich, and Jana Frank	547
Design and Simulation of an Integrated Model for Organisational Sustainability Applying the Viable System Model and System Dynamics Sergio Gallego-García and Manuel García-García	555

Applications of Machine Learning in Production Management	
Enabling Energy Efficiency in Manufacturing Environments Through Deep Learning Approaches: Lessons Learned	567
Retail Promotion Forecasting: A Comparison of Modern Approaches Casper Solheim Bojer, Iskra Dukovska-Popovska, Flemming Max Møller Christensen, and Kenn Steger-Jensen	575
A Data Mining Approach to Support Capacity Planning for the Regeneration of Complex Capital Goods	583
Developing Smart Supply Chain Management Systems Using Google Trend's Search Data: A Case Study	591
Collaborative Technology	
Managing Knowledge in Manufacturing Industry - University Innovation Projects	603
Technology Companies in Judicial Reorganization	611
Multiscale Modeling of Social Systems: Scale Bridging via Decision Making	617
e-Health: A Framework Proposal for Interoperability and Health Data Sharing. A Brazilian Case	625
Managing Risk and Opportunities in Complex Projects	631
Author Index	641