Skip to main content

Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2019)

Abstract

The recent improvements in solving Maximum Satisfiability (MaxSAT) problems has allowed the usage of MaxSAT in several application domains. However, it has been observed that finding an optimal solution in a reasonable amount of time remains a challenge. Moreover, in many applications it is enough to provide a good approximation of the optimum. Recently, new local search algorithms have been shown to be successful in approximating the optimum in MaxSAT problems. Nevertheless, these local search algorithms fail in finding feasible solutions to highly constrained instances. In this paper, we propose two constraint-based techniques for improving local search MaxSAT solvers. Firstly, an unsatisfiability-based algorithm is used to guide the local search solver into the feasible region of the search space. Secondly, given a partial assignment, we perform Minimal Correction Subsets (MCS) enumeration in order to improve upon the best solution found by the local search solver. Experimental results using a large set of instances from the MaxSAT evaluation 2018 show the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case of partial MaxSAT instances, a cardinality constraint is used.

  2. 2.

    We refer to the literature for further details [10, 33].

  3. 3.

    The source code of SATLike is publicly available at the 2018 MaxSAT evaluation https://maxsat-evaluations.github.io/2018/descriptions.html.

  4. 4.

    Instances available at https://maxsat-evaluations.github.io/2018/.

References

  1. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (Weighted) partial MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0_12

    Chapter  Google Scholar 

  2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) partial MaxSAT through satisfiability testing. In: Kullmann [30], pp. 427–440

    Google Scholar 

  3. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted partial maxsat. Artif. Intell. 250, 37–57 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asín, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT. Ann. Oper. Res. 218(1), 71–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Audemard, G., Lagniez, J.-M., Mazure, B., Saïs, L.: Boosting local search thanks to cdcl. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 474–488. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-8_34

    Chapter  Google Scholar 

  6. Audemard, G., Simon, L.: GUNSAT: a greedy local search algorithm for unsatisfiability. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2256–2261 (2007)

    Google Scholar 

  7. Bacchus, F., Järvisalo, M.J., Martins, R., et al.: MaxSAT evaluation 2018 (2018)

    Google Scholar 

  8. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30557-6_14

    Chapter  Google Scholar 

  9. Birnbaum, E., Lozinskii, E.: Consistent subsets of inconsistent systems: structure and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

    Article  MATH  Google Scholar 

  10. Cai, S.: Balance between complexity and quality: local search for minimum vertex cover in massive graphs. In: Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

    Google Scholar 

  11. Cai, S., Luo, C., Thornton, J., Su, K.: Tailoring local search for partial maxsat. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, Québec City, Québec, Canada, 27–31 July 2014, pp. 2623–2629. AAAI Press (2014)

    Google Scholar 

  12. Cai, S., Luo, C., Zhang, H.: From decimation to local search and back: a new approach to maxsat. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 571–577 (2017). ijcai.org

  13. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_13

    Chapter  MATH  Google Scholar 

  14. Demirovic, E., Stuckey, P.J.: LinSBPS. MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki, pp. 8–9 (2018)

    Google Scholar 

  15. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 36–41. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_5

    Chapter  Google Scholar 

  16. Een, N.: MiniSat: a sat solver with conflict-clause minimization. In: Proceedings SAT-05: 8th International Conference on Theory and Applications of Satisfiability Testing, pp. 502–518 (2005)

    Chapter  Google Scholar 

  17. Fan, Y., Ma, Z., Su, K., Sattar, A., Li, C.: Ramp: a local search solver based on make-positive variables. MaxSAT Evaluation (2016)

    Google Scholar 

  18. Fang, L., Hsiao, M.S.: A new hybrid solution to boost SAT solver performance. In: Design, Automation and Test in Europe Conference, pp. 1307–1313 (2007)

    Google Scholar 

  19. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for inconsistent constraint sets. Artif. Intell. Eng. Des. Anal. Manuf. 26(1), 53–62 (2012)

    Article  Google Scholar 

  20. Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated synthesis of semantic malware signatures using maximum satisfiability. In: 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA, 26 February–1 March 2017. The Internet Society (2017)

    Google Scholar 

  21. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_25

    Chapter  Google Scholar 

  22. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Conference and Exposition on Design, Automation and Test in Europe, pp. 10886–10891 (2003)

    Google Scholar 

  23. Gu, J.: Efficient local search for very large-scale satisfiability problems. ACM SIGART Bull. 3(1), 8–12 (1992)

    Article  Google Scholar 

  24. Henard, C., Papadakis, M., Harman, M., Traon, Y.L.: Combining multi-objective search and constraint solving for configuring large software product lines. In: International Conference on Software Engineering, pp. 517–528 (2015)

    Google Scholar 

  25. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: Programming Language Design and Implementation, pp. 437–446. ACM (2011)

    Google Scholar 

  26. Joshi, S., Kumar, P., Manquinho, V., Martins, R., Nadel, A., Rao, S.: Open-WBO-Inc in MaxSAT evaluation 2018. MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki, pp. 16–17 (2018)

    Google Scholar 

  27. Joshi, S., Kumar, P., Martins, R., Rao, S.: Approximation strategies for incomplete MaxSAT. In: Hooker, J. (ed.) CP 2018. LNCS, vol. 11008, pp. 219–228. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98334-9_15

    Chapter  Google Scholar 

  28. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local search paradigms: a new strategy for MaxSAT. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, 11–17 July 2009, pp. 544–551 (2009)

    Google Scholar 

  29. Kugel, A.: akmaxsat and akmaxsat\(\_\)ls solver description. Technical report, MaxSAT Evaluation 2012 Solver Descriptions (2012)

    Google Scholar 

  30. Kullmann, O. (ed.): International Conference on Theory and Applications ofSatisfiability Testing, LNCS, vol. 5584. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2

    Book  Google Scholar 

  31. Lang, J. (ed.): Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden (2018). ijcai.org

  32. Lei, Z., Cai, S.: SATlike-c. MaxSAT Evaluation 2018: Solver and Benchmark Descriptions, volume B-2018-2 of Department of Computer Science Series of Publications B, University of Helsinki, pp. 24–25 (2018)

    Google Scholar 

  33. Lei, Z., Cai, S.: Solving (weighted) partial maxsat by dynamic local search for SAT. In: Lang [33], pp. 1346–1352

    Google Scholar 

  34. Letombe, F., Marques-Silva, J.: Hybrid incremental algorithms for booleansatisfiability. Int. J. Artif. Intell. Tools 21(6) (2012). https://doi.org/10.1142/S021821301250025X

    Article  Google Scholar 

  35. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability, pp. 613–631. IOS Press (2009)

    Google Scholar 

  36. Luo, C., Cai, S., Su, K., Huang, W.: CCEHC: an efficient local search algorithm for weighted partial maximum satisfiability. Artif. Intell. 243, 26–44 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Luo, C., Cai, S., Wu, W., Jie, Z., Su, K.: CCLS: an efficient local search algorithm for weighted maximum satisfiability. IEEE Trans. Computers 64(7), 1830–1843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean Optimization. In: Kullmann [30], pp. 495–508

    Google Scholar 

  39. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On Computing Minimal Correction Subsets. In: International Joint Conference on Artificial Intelligence, pp. 615–622 (2013)

    Google Scholar 

  40. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality constraints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–548. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_39

    Chapter  Google Scholar 

  41. Mencía, C., Previti, A., Marques-Silva, J.: Literal-based MCS extraction. In: International Joint Conference on Artificial Intelligence, pp. 1973–1979 (2015)

    Google Scholar 

  42. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardinality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_41

    Chapter  Google Scholar 

  43. Morgado, A., Ignatiev, A., Marques-Silva, J.: MSCG: robust core-guided maxsat solving. JSAT 9, 129–134 (2014)

    MathSciNet  Google Scholar 

  44. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT resolution. In: AAAI Conference on Artificial Intelligence, pp. 2717–2723. AAAI Press (2014)

    Google Scholar 

  45. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.: Improved design debugging using maximum satisfiability. In: Formal Methods in Computer-Aided Design, pp. 13–19. IEEE Computer Society (2007)

    Google Scholar 

  46. Selman, B., Kautz, H.A., Cohen, B.: Local search strategies for satisfiability testing. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, 11–13 October 1993. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, pp. 521–532. DIMACS/AMS (1993)

    Google Scholar 

  47. Sugawara, T.: Maxroster: solver description. MaxSAT Eval. 2017, 12 (2017)

    Google Scholar 

  48. Terra-Neves, M., Machado, N., Lynce, I., Manquinho, V.: Concurrency debugging with maxSMT. In: AAAI Conference on Artificial Intelligence. AAAI Press (2019)

    Google Scholar 

  49. Terra-Neves, M., Lynce, I., Manquinho, V.M.: Stratification for constraint-based multi-objective combinatorial optimization. In: Lang [31], pp. 1376–1382

    Google Scholar 

  50. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT & MAX-SAT. In: The Seventh International Conference on Theory and Applications of Satisfiability Testing, SAT 2004, 10–13 May 2004, Vancouver, BC, Canada, Online Proceedings (2004)

    Google Scholar 

  51. Zhang, J., Zhang, H.: Combining local search and backtracking techniques for constraint satisfaction. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference, pp. 369–374 (1996)

    Google Scholar 

Download references

Acknowledgments

This work was supported by national funds through FCT with references UID/CEC/50021/2019, PTDC/CCI-COM/31198/2017 and DSAIPA/AI/0044/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco Manquinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerreiro, A.P., Terra-Neves, M., Lynce, I., Figueira, J.R., Manquinho, V. (2019). Constraint-Based Techniques in Stochastic Local Search MaxSAT Solving. In: Schiex, T., de Givry, S. (eds) Principles and Practice of Constraint Programming. CP 2019. Lecture Notes in Computer Science(), vol 11802. Springer, Cham. https://doi.org/10.1007/978-3-030-30048-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30048-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30047-0

  • Online ISBN: 978-3-030-30048-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics