Skip to main content

Performance Analysis on Wireless Power Transfer Wireless Sensor Network with Best AF Relay Selection over Nakagami-m Fading

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2019)

Abstract

In this paper, we present the performance analysis of energy harvesting amplify-and-forward (AF) relaying wireless sensor network with best relay selection scheme over Nakagami-m fading. Specifically, this considered network consists of one sink, multiple energy-constrained relays, and one destination sensor node. The best relay is chosen to amplify and forward the message to the destination after powered by the sink. In order to evaluate the performance, the closed-form expression of outage probability and throughput are derived by applying the discrete optimal power splitting ratio. Based on this expression, we investigate the behavior of this network according to the key parameters such as transmit power, number of relays, time switching ratio and the distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Zhang, Z., Chen, H.H., Zhang, H.: Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag. 53(4), 133–141 (2015)

    Article  Google Scholar 

  2. Ha, D.B., Tran, D.D., Truong, T.V., Vo, N.V.: Physical layer secrecy performance of energy harvesting networks with power transfer station selection. In: IEEE International Conference on Communications and Electronics (ICCE), pp. 451–456 (2016)

    Google Scholar 

  3. Vo, V.N., Nguyen, T.G., So-In, C., Ha, D.B.: Secrecy performance analysis of energy harvesting wireless sensor networks with a friendly jammer. IEEE Access (2017)

    Google Scholar 

  4. Xu, K., Shen, Z., Wang, Y., Xia, X.: Beam-domain hybrid time-switching and power splitting SWIPT in full-duplex massive MIMO system. EURASIP J. Wirel. Commun. Netw., 1–21 (2018)

    Google Scholar 

  5. Suraweera, H.A., Karagiannidis, G.K., Smith, P.J.: Performance analysis of the dual-hop asymmetric fading channel. IEEE Trans. Wirel. Commun. 8(6), 2783–2788 (2009)

    Article  Google Scholar 

  6. Gurung, A.K., AI-Qahtani, F.S., Hussain, Z.M., Alnuweiri, H.: Performance analysis of amplify-forward relay in mixed Nakagami-m and Rician fading channels. In: The 2010 International Conference on Advanced Technologies for Communications, Ho Chi Minh City, Vietnam, 20–22 October 2010, pp. 321–326 (2010)

    Google Scholar 

  7. Haghighat, J., Eslami, M., Hamouda, W.: Relay pre-selection for reducing CSI transmission in wireless sensor networks. IEEE Commun. Lett. 20(9), 1828–1831 (2016)

    Article  Google Scholar 

  8. Mousavi, S.H., Haghighat, J., Hamouda, W., Dastbasteh, R.: Analysis of a subset selection scheme for wireless sensor networks in timevarying fading channels. IEEE Trans. Signal Process. 64(9), 2193–2208 (2016)

    Article  MathSciNet  Google Scholar 

  9. Kim, J.B., Song, M.S., Lee, I.H.: Achievable rate of best relay selection for non-orthogonal multiple access-based cooperative relaying systems. In: International Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea, pp. 960–962. IEEE (2016)

    Google Scholar 

  10. Gendia, A.H., Elsabrouty, M., Emran, A.A.: Cooperative multi-relay non-orthogonal multiple access for downlink transmission in 5G communication systems. In: 2017 Wireless Days, Porto, Portugal. IEEE (2017)

    Google Scholar 

  11. Luo, Y., Zhang, J., Letaief, K.B.: Relay selection for energy harvesting cooperative communication systems. In: IEEE Global Communications Conference (GLOBECOM), pp. 2514–2519 (2013)

    Google Scholar 

  12. Ishibashi, K.: Dynamic harvest-and-forward: new cooperative diversity with RF energy harvesting. In: 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP), 23–25 October 2014, pp. 1–5 (2014)

    Google Scholar 

  13. Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Block-wise time-switching energy harvesting protocol for wireless-powered AF relays. In: 2015 IEEE International Conference on Communications (ICC), 8–12 June 2015, pp. 80–85 (2015)

    Google Scholar 

  14. Ha, D.B., Tran, D.D., Tran-Ha, V., Hong, E.K.: Performance of amplify-and-forward relaying with wireless power transfer over dissimilar channels. Elektronika ir Elektrotechnika J. 21(5), 90–95 (2015)

    Google Scholar 

  15. Liu, Y.: Wireless information and power transfer for multi-relay assisted cooperative communication. IEEE Commun. Lett. 20(4), 784–787 (2016)

    Article  Google Scholar 

  16. Nguyen, H.S., Do, D.T., Nguyen, T.S., Voznak, M.: Exploiting hybrid time switching-based and power splitting-based relaying protocol in wireless powered communication networks with outdated channel state information. J. Control Meas. Electron. Comput. Commun. 58(1), 111–118 (2017)

    Google Scholar 

  17. Ha, D.B., Nguyen, Q.S.: Outage performance of energy harvesting DF relaying NOMA networks. Mobile Netw. Appl. (2017)

    Google Scholar 

  18. Cvetkovic, A., Blagojevic, V., Ivanis, P.: Performance analysis of nonlinear energy-harvesting DF relay system in interference-limited Nakagami-m fading environment. ETRI J. 39(6), 803–812 (2017)

    Article  Google Scholar 

  19. Singh, V., Ochiai, H.: A efficient time switching protocol with adaptive power splitting for wireless energy harvesting relay networks. In: IEEE 85th Vehicular Technology Conference (VTC Spring) (2017)

    Google Scholar 

  20. Zhong, S., Huang, H., Li, R.: Performance analysis of energy-harvesting-aware multi-relay networks in Nakagami-m fading. EURASIP J. Wirel. Commun. Netw. 2018, 63 (2018)

    Article  Google Scholar 

  21. Ha, D.H., Ha, D.B., Zdralek, J., Voznak, M.: A new protocol based on optimal capacity for energy harvesting amplify-and-forward relaying networks. In: 5th NAFOSTED Conference on Information and Computer Science (NICS), HCMC, Vietnam (2018)

    Google Scholar 

  22. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products. Elsevier Academic Press, Cambridge (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dac-Binh Ha .

Editor information

Editors and Affiliations

Appendix

Appendix

Here, we derive the expression of \(P^*_{out}\) as (12) on the top of next page. Substituting (12) into (8), we obtain the closed-form expression of outage probability for this system.

$$\begin{aligned}&P^*_{out} = \Pr (\gamma _{e2e}^{*}<2^{\frac{2R}{1-\alpha }}-1) \nonumber \\&= 1-\overset{L-1}{\underset{l=1}{\sum }}\Pr \left( \dfrac{c\gamma _{0}\gamma _{1}\gamma _{2}(1-\rho _{l})\rho _{l}}{c(1-\rho _{l})\gamma _{2}+\rho _{l}}>\gamma _{th},b_{l}\le \gamma _{2}<b_{l+1}\right) \nonumber \\&= 1-\overset{L-1}{\underset{l=1}{\sum }}\overset{b_{l+1}}{\underset{b_l}{\int }}\left[ 1-F_{\gamma _{1}}\left( \dfrac{c(1-\rho _{l})\gamma _{th}x+\rho _{l}\gamma _{th}}{c(1-\rho _{l})\rho _{l}\gamma _{0}x}\right) \right] f_{\gamma _{2}}(x)dx\nonumber \\&= 1-\overset{L-1}{\underset{l=1}{\sum }}\overset{m_{1}-1}{\underset{j=0}{\sum }}\overset{j}{\underset{i=0}{\sum }}\dfrac{e^{-\tfrac{m_{1}\gamma _{th}}{\lambda _{1}\rho _{l}\gamma _{0}}}}{i!(j-i)!(m_{2}-1)!c^{i}(1-\rho _{l})^{i}\rho _{l}^{j-i}}\left( \dfrac{m_{1}\gamma _{th}}{\lambda _{1}\gamma _{0}}\right) ^{j}\left( \dfrac{m_{2}}{\lambda _{2}}\right) ^{m_{2}}\nonumber \\&\times \overset{b_{l+1}}{\underset{b_l}{\int }}x^{m_{2}-i-1}e^{-\tfrac{m_{1}\gamma _{th}}{\lambda _{1}c(1-\rho _{l})\gamma _{0}x}-\tfrac{m_{2}x}{\lambda _{2}}}dx \end{aligned}$$
$$\begin{aligned}= & {} 1-\overset{L-1}{\underset{l=1}{\sum }}\overset{m_{1}-1}{\underset{j=0}{\sum }}\overset{j}{\underset{i=0}{\sum }}\dfrac{e^{-\tfrac{m_{1}\gamma _{th}}{\lambda _{1}\rho _{l}\gamma _{0}}}}{i!(j-i)!(m_{2}-1)!c^{i}(1-\rho _{l})^{i}\rho _{l}^{j-i}}\left( \dfrac{m_{1}\gamma _{th}}{\lambda _{1}\gamma _{0}}\right) ^{j}\left( \dfrac{m_{2}}{\lambda _{2}}\right) ^{m_{2}}\nonumber \\\times & {} \left[ \overset{\infty }{\underset{b_l}{\int }}x^{m_{2}-i-1}e^{-\tfrac{m_{1}\gamma _{th}}{\lambda _{1}c(1-\rho _{l})\gamma _{0}x}-\tfrac{m_{2}x}{\lambda _{2}}}dx-\overset{\infty }{\underset{b_{l+1}}{\int }}x^{m_{2}-i-1}e^{-\tfrac{m_{1}\gamma _{th}}{\lambda _{1}c(1-\rho _{l})\gamma _{0}x}-\tfrac{m_{2}x}{\lambda _{2}}}dx\right] \nonumber \end{aligned}$$
(12)

where \(\gamma _{th}=2^{\tfrac{2R}{(1-\alpha )}}-1\). Note that step (b) and (c) are obtained by the help of (1.211-1) and (3.381-3), respectively, in [22].

This concludes our proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ha, DH., Ha, DB., Vo, VA., Voznak, M. (2019). Performance Analysis on Wireless Power Transfer Wireless Sensor Network with Best AF Relay Selection over Nakagami-m Fading. In: Duong, T., Vo, NS., Nguyen, L., Vien, QT., Nguyen, VD. (eds) Industrial Networks and Intelligent Systems. INISCOM 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-30149-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30149-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30148-4

  • Online ISBN: 978-3-030-30149-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics