Skip to main content

A Human-Oriented Term Rewriting System

  • Conference paper
  • First Online:
KI 2019: Advances in Artificial Intelligence (KI 2019)

Abstract

We introduce a fully automatic system, implemented in the Lean theorem prover, that solves equality problems of everyday mathematics. Our overriding priority in devising the system is that it should construct proofs of equality in a way that is similar to that of humans. A second goal is that the methods it uses should be domain independent. The basic strategy of the system is to operate with a subtask stack: whenever there is no clear way of making progress towards the task at the top of the stack, the program finds a promising subtask, such as rewriting a subterm, and places that at the top of the stack instead. Heuristics guide the choice of promising subtasks and the rewriting process. This makes proofs more human-like by breaking the problem into tasks in the way that a human would. We show that our system can prove equality theorems simply, without having to preselect or orient rewrite rules as in standard theorem provers, and without having to invoke heavy duty tools for performing simple reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baader, F., Nipkow, T.: Term Rewriting and All that. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1–2), 281–300 (1997)

    Article  Google Scholar 

  3. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_9

    Chapter  Google Scholar 

  4. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg (1988). https://doi.org/10.1007/BFb0012826

    Chapter  Google Scholar 

  5. Bundy, A.: A critique of proof planning. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 160–177. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45632-5_7

    Chapter  Google Scholar 

  6. Bundy, A.: Automated theorem provers: a practical tool for the working mathematician? Ann. Math. Artif. Intell. 61(1), 3 (2011). https://doi.org/10.1007/s10472-011-9248-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868_7

    Chapter  MATH  Google Scholar 

  8. Hoek, K., Morrison, S.: Lean-rewrite-search repository (2019). https://github.com/semorrison/lean-rewrite-search

  9. Kambhampati, S., Knoblock, C.A., Yang, Q.: Planning as refinement search: a unified framework for evaluating design tradeoffs in partial-order planning. Artif. Intell. 76(1), 167–238 (1995)

    Article  Google Scholar 

  10. Langley, P., Choi, D., Trivedi, N.: Icarus user’s manual. Institute for the Study of Learning and Expertise 2164 (2011)

    Google Scholar 

  11. Melis, E., Siekmann, J.: Knowledge-based proof planning. Artif. Intell. 115(1), 65–105 (1999)

    Article  MathSciNet  Google Scholar 

  12. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_26

    Chapter  Google Scholar 

  13. Tate, A.: Generating project networks. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, vol. 2, pp. 888–893. Morgan Kaufmann Publishers Inc. (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward William Ayers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ayers, E.W., Gowers, W.T., Jamnik, M. (2019). A Human-Oriented Term Rewriting System. In: Benzmüller, C., Stuckenschmidt, H. (eds) KI 2019: Advances in Artificial Intelligence. KI 2019. Lecture Notes in Computer Science(), vol 11793. Springer, Cham. https://doi.org/10.1007/978-3-030-30179-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30179-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30178-1

  • Online ISBN: 978-3-030-30179-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics