Abstract
The Stern signatures are a class of lattice-based signatures constructed from Stern protocols, a special class of sigma protocols, admitting diverse functionalities with good asymptotic efficiency. However, the post-quantum security of existing Stern signatures is unclear, since they are built via the Fiat-Shamir transformation, which has not been proved to be secure in the quantum random oracle model (QROM). The goal of this paper is to find an alternative transformation for constructing post-quantum secure Stern signatures.
The Unruh transformation (Eurocrypt 2015) is an alternative that can build secure signatures in QROM from post-quantum secure sigma protocols. Unfortunately, its proof relies on the 2-special soundness of the underlying sigma protocol, while Stern protocols are 3-special sound. We fill this gap by providing an extended proof for the Unruh transformation. Specifically, we prove that it is still secure in the QROM even if the underlying sigma protocols are k-special sound, where \(k>2\) could be an arbitrary integer. Observing that Stern protocols are post-quantum secure sigma protocols with 3-special soundness, our proof implies a generic method to obtain secure Stern signatures in the QROM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: the 28th ACM STOC, pp. 99–108. ACM (1996)
Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: FOCS 2014, pp. 474–483. IEEE Computer Society (2014)
Ben-Or, M.: Probabilistic algorithms in finite fields. In: FOCS 1981, pp. 394–398 (1981)
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Brakerski, Z., Kalai, Y.T.: A framework for efficient signatures, ring signatures and identity based encryption in the standard model. IACR Cryptology ePrint Archive 2010, 86 (2010)
Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.: Improved OR-composition of sigma-protocols. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 112–141. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_5
Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for NIZK almost as efficient and general as the Fiat-Shamir transform without programmable random oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 83–111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0_4
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23
Groth, J.: Evaluating security of voting schemes in the universal composability framework. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 46–60. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24852-1_4
Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9
Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23
Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_18
Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_20
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge arguments for matrix-vector relations and lattice-based group encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 101–131. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_4
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based PRFs and applications to e-cash. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_11
Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_8
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 58–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_3
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Forward-secure group signatures from lattices. CoRR abs/1801.08323 (2018)
Liu, Q., Zhandry, M.: Revisiting post-quantum Fiat-Shamir. IACR Cryptology ePrint Archive 2019, 262 (2019)
Stern, J.: A new paradigm for public key identification. IEEE Trans. Inf. Theory 42(6), 1757–1768 (1996)
Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25
Unruh, D.: Post-quantum security of Fiat-Shamir. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 65–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_3
Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Lattice-based techniques for accountable anonymity: composition of abstract Stern’s protocols and weak PRF with efficient protocols from LWR. IACR Cryptology ePrint Archive 2017, 781 (2017)
Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44
Acknowledgment
This paper is supported by the National Key Research and Development Program of China through project 2017YFB0802502, by the National Cryptography Development Fund through project MMJJ20170106, by the National Natural Science Foundation of China through projects 61672083, 61532021, 61472429, 61402029, 61702028 and 61571024, by the Beijing Natural Science Foundation through project 4132056.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Stern Protocols
A Stern Protocols
Let \(\text {COM}\) be the string commitment scheme from [13], which is statistically hiding and computational binding and based on the SIS assumptions [1]. Assuming there is an ESP \(\mathbb {E}_S=\{\varPhi _{\varphi }|\varphi \in \mathbb {S}\}\) for the set \(\mathbb {V}\) of the Stern relation \(R_{S}\), there is a sigma protocol as in Fig. 3 for \(R_{S}\).
In a high level, this protocol is derived by two main techniques, permutation and masking.
-
permutation: to prove the witness \(\mathbf {x}\in \mathbb {V}\), the prover randomly samples \(\varphi \leftarrow \mathbb {S}\) that is associated with a permutation \(\varPhi _{\varphi }\), and computes \(\varPhi _{\varphi }(\mathbf {x})\). The prover can convince the verifier that \(\mathbf {x}\in \mathbb {V}\) in zero-knowledge by leaking \(\varPhi _{\varphi }(\mathbf {x})\), since from the properties of \(\varPhi _{\varphi }\) as in Definition 8, we have
$$\begin{aligned} \varPhi _{\varphi }(\mathbf {x})\in \mathbb {V}\Longleftrightarrow \mathbf {x}\in \mathbb {V}. \end{aligned}$$ -
masking: to prove the knowledge of \(\mathbf {x}\) s.t. \(\mathbf {M}\cdot \mathbf {x}=\mathbf {v}\bmod q\), the prover samples \(\mathbf {r}\leftarrow \mathbb {Z}_{q}^{d}\), and demonstrates \(\mathbf {M}\cdot (\mathbf {r}+\mathbf {x})=\mathbf {M}\cdot \mathbf {r}+\mathbf {v}\bmod q\) instead.
The two techniques give an intuitive reason why the Stern protocol has HVZK property. The 3-special soundness can be easily checked by computing a witness from three tuples with the same commitment. We refer interested readers to [19] for a detailed proof.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Feng, H., Liu, J., Wu, Q. (2019). Secure Stern Signatures in Quantum Random Oracle Model. In: Lin, Z., Papamanthou, C., Polychronakis, M. (eds) Information Security. ISC 2019. Lecture Notes in Computer Science(), vol 11723. Springer, Cham. https://doi.org/10.1007/978-3-030-30215-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-30215-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30214-6
Online ISBN: 978-3-030-30215-3
eBook Packages: Computer ScienceComputer Science (R0)