Skip to main content

Digital Ampelographer: A CNN Based Preliminary Approach

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Abstract

Authenticity, traceability and certification are key to assure both quality and confidence to wine consumers and an added commercial value to farmers and winemakers. Grapevine variety stands out as one of the most relevant factors to be considered in wine identification within the whole wine sector value chain. Ampelography is the science responsible for grapevine varieties identification based on (i) in-situ visual inspection of grapevine mature leaves and (ii) on the ampelographer experience. Laboratorial analysis is a costly and time-consuming alternative. Both the lack of experienced professionals and context-induced error can severely hinder official regulatory authorities’ role and therefore bring about a significant impact in the value chain.

The purpose of this paper is to assess deep learning potential to classify grapevine varieties through the ampelometric analysis of leaves. Three convolutional neural networks architectures performance are evaluated using a dataset composed of six different grapevine varieties leaves. This preliminary approach identified Xception architecture as very promising to classify grapevine varieties and therefore support a future autonomous tool that assists the wine sector stakeholders, particularly the official regulatory authorities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giacosa, E.: Wine consumption in a certain territory. Which factors may have impact on it? In: Grumezescu, A.M., Holban, A.M. (eds.) Production and Management of Beverages, pp. 361–380. Woodhead Publishing (2019). https://doi.org/10.1016/B978-0-12-815260-7.00012-2

    Chapter  Google Scholar 

  2. OIV: State of the Vitiviniculture World Market: State of the sector in 2018. Organisation Internationale de la Vigne et du Vin (OIV) (2019)

    Google Scholar 

  3. Azcarate, S.M., et al.: Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety. Food Chem. 184, 214–219 (2015). https://doi.org/10.1016/j.foodchem.2015.03.081

    Article  Google Scholar 

  4. Moncayo, S., Rosales, J.D., Izquierdo-Hornillos, R., Anzano, J., Caceres, J.O.: Classification of red wine based on its protected designation of origin (PDO) using laser-induced breakdown spectroscopy (LIBS). Talanta 158, 185–191 (2016). https://doi.org/10.1016/j.talanta.2016.05.059

    Article  Google Scholar 

  5. Rinaldi, A.: Wine global trends. Traditional leaders and new markets. Rivista di Scienze del Turismo - Ambiente Cultura Diritto Economia 6, 5–10 (2018). https://doi.org/10.7358/rst-2015-01-rina

  6. Hogg, T., Rebelo, J.: Rumo Estratégico para o Setor dos Vinhos do Porto e Douro, Relatório Final - Estudos de base, Instituto dos Vinhos do Douro e do Porto, I.P. Universidade de Trás-os-Montes e Alto Douro, INNOVINE&WINE, Vila Real, Portugal (2014)

    Google Scholar 

  7. Panzone, L.A., Simões, O.M.: The importance of regional and local origin in the choice of wine: hedonic models of Portuguese wines in Portugal. J. Wine Res. 20, 27–44 (2009). https://doi.org/10.1080/09571260902978527

    Article  Google Scholar 

  8. Diário da República: Decreto Lei no 173/2009 de 3 de Agosto (2009)

    Google Scholar 

  9. Gomez, F.J., Silva, M.F.: Microchip electrophoresis for wine analysis. Anal. Bioanal. Chem. 408, 8643–8653 (2016). https://doi.org/10.1007/s00216-016-9841-0

    Article  Google Scholar 

  10. Tassie, L.: Vine identification – knowing what you have (2010)

    Google Scholar 

  11. Garcia-Muñoz, S., Muñoz-Organero, G., Andrés, M.T. de, Cabello, F.: Ampelography - an old technique with future uses: the case of minor varieties of Vitis vinifera L. from the Balearic Islands. OENO One 45, 125–137 (2011). https://doi.org/10.20870/oeno-one.2011.45.3.1497

  12. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018). https://doi.org/10.1016/j.compag.2018.02.016

    Article  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs] (2014)

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv:1512.03385 [cs] (2015)

  15. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261 [cs] (2016)

  16. Chollet, F.: Xception: deep learning with depthwise separable convolutions. arXiv:1610.02357 [cs] (2016)

  17. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 [cs] (2017)

  18. Diário da República: Portaria n.o 383/2017, de 20 de dezembro (2017)

    Google Scholar 

  19. Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M.: Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 127, 418–424 (2016). https://doi.org/10.1016/j.compag.2016.07.003

    Article  Google Scholar 

  20. Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P.: Deep-plant: plant identification with convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 452–456 (2015). https://doi.org/10.1109/ICIP.2015.7350839

  21. Hall, D., McCool, C., Dayoub, F., Sunderhauf, N., Upcroft, B.: Evaluation of features for leaf classification in challenging conditions. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 797–804 (2015). https://doi.org/10.1109/WACV.2015.111

  22. Reyes, A.K., Caicedo, J.C., Camargo, J.E.: Fine-tuning deep convolutional networks for plant recognition. In: CLEF (Working Notes), vol. 1391, p. 9 (2015)

    Google Scholar 

  23. Pound, M.P., et al.: Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience 6, 1–10 (2017). https://doi.org/10.1093/gigascience/gix083

  24. Mortensen, A.K., Dyrmann, M., Karstoft, H., Jørgensen, R.N., Gislum, R.: Semantic segmentation of mixed crops using deep convolutional neural network. In: CIGR-AgEng Conference, Aarhus, Denmark, 26–29 June 2016, Abstracts and Full papers, pp. 1–6 (2016)

    Google Scholar 

  25. Zhu, H., Liu, Q., Qi, Y., Huang, X., Jiang, F., Zhang, S.: Plant identification based on very deep convolutional neural networks. Multimed. Tools Appl. 77, 29779–29797 (2018). https://doi.org/10.1007/s11042-017-5578-9

    Article  Google Scholar 

  26. Lee, J.W., Yoon, Y.C.: Fine-grained plant identification using wide and deep learning model 1. In: 2019 International Conference on Platform Technology and Service (PlatCon), pp. 1–5 (2019). https://doi.org/10.1109/PlatCon.2019.8669407

  27. Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A.: Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14, 778–782 (2017). https://doi.org/10.1109/LGRS.2017.2681128

    Article  Google Scholar 

  28. Rußwurm, M., Körner, M.: Multi-temporal land cover classification with sequential recurrent encoders. ISPRS Int. J. Geo-Inf. 7, 129 (2018). https://doi.org/10.3390/ijgi7040129

    Article  Google Scholar 

  29. Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D.: Deep neural networks based recognition of plant diseases by leaf image classification. https://www.hindawi.com/journals/cin/2016/3289801/. https://doi.org/10.1155/2016/3289801

    Article  Google Scholar 

  30. Mohanty, S.P., Hughes, D.P., Salathé, M.: Using deep learning for image-based plant disease detection. Front Plant Sci. 7, 1419 (2016). https://doi.org/10.3389/fpls.2016.01419

    Article  Google Scholar 

  31. Amara, J., Bouaziz, B., Algergawy, A.: A deep learning-based approach for banana leaf diseases classification. In: BTW (2017)

    Google Scholar 

  32. Toda, Y., Okura, F.: How convolutional neural networks diagnose plant disease (2019). https://spj.sciencemag.org/plantphenomics/2019/9237136/. https://doi.org/10.1155/2019/9237136

    Article  Google Scholar 

  33. Szegedy, C., et al.: Going deeper with convolutions. arXiv:1409.4842 [cs] (2014)

  34. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23. arXiv:1406.4729 [cs]

    Chapter  Google Scholar 

  35. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. arXiv:1512.00567 [cs] (2015)

  36. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. arXiv:1801.04381 [cs] (2018)

  37. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. arXiv:1409.0575 [cs] (2014)

  38. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely Connected Convolutional Networks (2016)

    Google Scholar 

  39. Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Statist. 23, 462–466 (1952). https://doi.org/10.1214/aoms/1177729392

    Article  MathSciNet  MATH  Google Scholar 

  40. Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate O(1/k^2). Dokl. Akad. Nauk SSSR 269, 543–547 (1983)

    MathSciNet  Google Scholar 

  41. Brownlee, J.: Deep learning with python: develop deep learning models on Theano and TensorFlow Using Keras, Melbourne, Australia

    Google Scholar 

  42. Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp: divide the gradient by a running average of its recent magnitude (2012)

    Google Scholar 

  43. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 [cs] (2014)

  44. Dozat, T.: Incorporating Nesterov Momentum into Adam (2016)

    Google Scholar 

  45. TensorFlow. https://www.tensorflow.org/

  46. Welcome — Theano 0.9.0 documentation. http://deeplearning.net/software/theano/

  47. Keras Documentation. https://keras.io/

  48. Deep Learning Toolbox. https://www.mathworks.com/products/deep-learning.html

  49. Caffe|Deep L. Framework. https://caffe.berkeleyvision.org/

  50. PyTorch. https://www.pytorch.org

  51. Deep Cognition. https://deepcognition.ai/

Download references

Acknowledgements

The authors would like to acknowledge project “CHIC – Cooperative Holistic View on Internet and Content” (N° 24498), financed the European Regional Development Fund (ERDF) through COMPETE2020 - the Operational Programme for Competitiveness and Internationalisation (OPCI) that partially supported this work, Port and Douro Wines Institute, I. P. (IVDP, I.P.) for their collaboration in this work.

Author information

Authors and Affiliations

Authors

Contributions

This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project «POCI-01-0145-FEDER-006961», and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.

Corresponding author

Correspondence to Telmo Adão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adão, T. et al. (2019). Digital Ampelographer: A CNN Based Preliminary Approach. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11804. Springer, Cham. https://doi.org/10.1007/978-3-030-30241-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30241-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30240-5

  • Online ISBN: 978-3-030-30241-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics