Skip to main content

The Influence of Age and Gender in the Interaction with Touch Screens

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11805))

Included in the following conference series:

Abstract

Touch screens are nowadays one of the major interfaces in the interaction between humans and technology, mostly due to the significant growth in the use of smartphones and tablets in the last years. This broad use, that reaches people from all strata of society, makes touch screens a relevant tool to study the mechanisms that influence the way we interact with electronic devices. In this paper we collect data regarding the interaction patterns of different users with mobile devices. We present a way to formalize these interaction patterns and analyze how aspects such as age and gender influence them. The results of this research may be relevant for developing mobile applications that identify and adapt to the users or their characteristics, including impairments in fine motor skills or in cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oulasvirta, A., Rattenbury, T., Ma, L., Raita, E.: Habits make smartphone use more pervasive. Pers. Ubiquit. Comput. 16(1), 105–114 (2012)

    Article  Google Scholar 

  2. Leeming, K., Swann, W., Coupe, J., Mittler, P.: Non-verbal communication. In: Teaching Language and Communication to the Mentally Handicapped, pp. 238–267, Routledge (2018)

    Google Scholar 

  3. Carneiro, D., Novais, P., Pêgo, J.M., Sousa, N., Neves, J.: Using mouse dynamics to assess stress during online exams. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 345–356. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19644-2_29

    Chapter  Google Scholar 

  4. Pimenta, A., Carneiro, D., Neves, J., Novais, P.: A neural network to classify fatigue from human-computer interaction. Neurocomputing 172, 413–426 (2016)

    Article  Google Scholar 

  5. Pentel, A.: Predicting age and gender by keystroke dynamics and mouse patterns. In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 381–385. ACM (2017)

    Google Scholar 

  6. Nahin, A.N.H., Alam, J.M., Mahmud, H., Hasan, K.: Identifying emotion by keystroke dynamics and text pattern analysis. Behav. Inf. Technol. 33(9), 987–996 (2014)

    Article  Google Scholar 

  7. Ciman, M., Wac, K.: Individuals’ stress assessment using human-smartphone interaction analysis. IEEE Trans. Affect. Comput. 9(1), 51–65 (2018)

    Article  Google Scholar 

  8. Mehrotra, A., Hendley, R., Musolesi, M.: Towards multi-modal anticipatory monitoring of depressive states through the analysis of human-smartphone interaction. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, pp. 1132–1138. ACM (2016)

    Google Scholar 

  9. Padmaja, B., Prasad, V.R., Sunitha, K.: TreeNet analysis of human stress behavior using socio-mobile data. J. Big Data 3(1), 24 (2016)

    Article  Google Scholar 

  10. Boonstra, T.W., Nicholas, J., Wong, Q.J., Shaw, F., Townsend, S., Christensen, H.: Using mobile phone sensor technology for mental health research: integrated analysis to identify hidden challenges and potential solutions. J. Med. Internet Res. 20(7), e10131 (2018)

    Article  Google Scholar 

  11. Sanchis, A., Julián, V., Corchado, J.M., Billhardt, H., Carrascosa, C.: Using natural interfaces for human-agent immersion. In: Corchado, J.M., Bajo, J., Kozlak, J., Pawlewski, P., Molina, J.M., Gaudou, B., Julian, V., Unland, R., Lopes, F., Hallenborg, K., García Teodoro, P. (eds.) PAAMS 2014. CCIS, vol. 430, pp. 358–367. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07767-3_32

    Chapter  Google Scholar 

  12. Sanchis, Á., Inglada, J., Javier, V., Corchado, J.M., Billhardt, H., Carrascosa Casamayor, C.: Improving human-agent immersion using natural interfaces and CBR. Int. J. Artif. Intell. 13(1), 81–93 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is co-funded by Fundos Europeus Estruturais e de Investimento (FEEI) through Programa Operacional Regional Norte, in the scope of project NORTE-01-0145-FEDER-023577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Carneiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rocha, R., Carneiro, D., Novais, P. (2019). The Influence of Age and Gender in the Interaction with Touch Screens. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics