Skip to main content

Using Summarization Techniques on Patent Database Through Computational Intelligence

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11805))

Included in the following conference series:

  • 1870 Accesses

Abstract

Patents are an important source of information for measuring the technological advancement of a specific knowledge domain. The volume of patents available in digital databases has grown rapidly and, in order to take advantage of existing patent knowledge, it is essential to organize information in an accessible and simple format. The classification systems groups, made available by patent offices, were given names capable of representing them and facilitating the process of searching for the information associated with its content. The purpose of this paper is to use automatic text summarization techniques to develop an automatic methodology to help the examiner to name new patent groups created by the categorization systems. We used three summarization strategies with two different approaches to choose the most representative sentence for each subgroup. The experiments were performed on the basis of abstracts and descriptions of patent documents, in order to evaluate the performance of the methodology proposed in different sections of the patent document. Validation experiments were conducted using four subgroups of the United States Patent and Trademark Office, which uses the Cooperative Patent Classification system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tseng, Y.H., Lin, C.J., Lin, Y.I.: Text mining techniques for patent analysis. Inf. Process. Manag. 43(5), 1216–1247 (2007)

    Article  Google Scholar 

  2. Ouellette, L.L.: Who reads patents? Nat. Biotechnol. 35(5), 421–424 (2017)

    Article  Google Scholar 

  3. Hufker, T., Alpert, F.: Patents: a managerial perspective. J. Prod. Brand Manag. 3(4), 44–54 (1994)

    Article  Google Scholar 

  4. Codina-Filbà, J., et al.: Using genre-specific features for patent summaries. Inf. Process. Manag. 53(1), 151–174 (2017)

    Article  Google Scholar 

  5. Kim, J., Lee, S.: Patent databases for innovation studies: a comparative analysis of USPTO, EPO, JPO and KIPO. Technol. Forecast. Soc. Change 92, 332–345 (2015)

    Article  Google Scholar 

  6. Trappey, A.J., Trappey, C.V., Wu, C.Y.: Automatic patent document summarization for collaborative knowledge systems and services. J. Syst. Sci. Syst. Eng. 18(1), 71–94 (2009)

    Article  Google Scholar 

  7. Camus, C., Brancaleon, R.: Intellectual assets management: from patents to knowledge. World Pat. Inf. 25, 155–159 (2003)

    Article  Google Scholar 

  8. Markellos, K., Perdikuri, K., Markellou, P., Sirmakessis, S., Mayritsakis, G., Tsakalidis, A.: Knowledge discovery in patent databases. In: Proceedings of the eleventh International Conference on Information and Knowledge Management (CIKM 2002), pp. 672–674. ACM (2002)

    Google Scholar 

  9. Leydesdorff, L.: The university-industry knowledge relationship: analyzing patents and the science base of technologies. J. Am. Soc. Inf. Sci. Technol. 55(11), 991–1001 (2004)

    Article  Google Scholar 

  10. Madani, F., Weber, C.: The evolution of patent mining: applying bibliometricsanalysis and keyword network analysis. World Pat. Inf. 46, 32–48 (2016)

    Article  Google Scholar 

  11. Mille, S., Wanner, L.: Multilingual summarization in practice: the case of patent claims. In: Proceedings of the 12th European Association of Machine Translation Conference (2008)

    Google Scholar 

  12. Allahyari, M., et al.: A brief survey of text mining: classification, clustering and extraction techniques. arXiv preprint arXiv:1707.02919 (2017)

  13. Wang, D., Zhu, S., Li, T., Chi, Y., Gong, Y.: Integrating document clustering and multidocument summarization. ACM Trans. Knowl. Discov. Data (TKDD) 5(3), 14 (2011)

    Google Scholar 

  14. Gambhir, M., Gupta, V.: Recent automatic text summarization techniques: a survey. Artif. Intell. Rev. 47(1), 1–66 (2017)

    Article  Google Scholar 

  15. Erkan, G., Radev, D.R.: Graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

    Article  Google Scholar 

  16. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  17. Dokun, O., Celebi, E.: Single-document summarization using latent semantic analysis. Int. J. Sci. Res. Inf. Syst. Eng. (IJSRISE) 1(2), 57–64 (2015)

    Google Scholar 

  18. Froud, H., Lachkar, A., Ouatik, S.A.: Arabic text summarization based on latent semantic analysis to enhance Arabic documents clustering. Int. J. Data Min. Knowl. Manag. Process 3(1), 79–95 (2013)

    Article  Google Scholar 

  19. Savyanavar, P., Mehta, B., Marathe, V., Padvi, P., Shewale, M.: Multi-document summarization using TF-IDF Algorithm. Int. J. Eng. Comput. Sci. 5(4), 16253–16256 (2016)

    Google Scholar 

  20. Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 28(1), 11–21 (1972)

    Article  Google Scholar 

  21. Singh, S.P., Kumar, A., Mangal, A., Singhal, S.: Bilingual automatic text summarization using unsupervised deep learning. In: 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 1195–1200 (2016)

    Google Scholar 

  22. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic Similarity from natural language and ontology analysis. Synth. Lect. Hum. Lang. Technol. 8(1), 1–254 (2015)

    Article  Google Scholar 

  23. Al-Natsheh, H.T., Martinet, L., Muhlenbach, F., Zighed, D.A.: UdL at SemEval-2017 task 1: semantic textual similarity estimation of English sentence pairs using regression model over pairwise features. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 115–119 (2017)

    Google Scholar 

  24. Fall, C.J., Törcsvári, A., Benzineb, K., Karetka, G.: Automated categorization in the international patent classification. ACM SIGIR Forum 37(1), 10–25 (2003)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the financial support of the Pontifical Catholic University of Minas Gerais (PUC Minas), the Federal Center for Technological Education of Minas Gerais (CEFET-MG), the National Council for Scientific and Technological Development (CNPq, grant 429144/2016-4) and the Foundation for Research Support of the State of Minas Gerais (FAPEMIG, grant APQ 01454-17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magali R. G. Meireles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Souza, C.M., Santos, M.E., Meireles, M.R.G., Almeida, P.E.M. (2019). Using Summarization Techniques on Patent Database Through Computational Intelligence. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics