Abstract
In this paper we present tasplan, a complete planner for temporal logic programs. The planner receives a planning specification as input, having the form of a temporal ASP program, and obtains as output one or several alternative (shortest) plans, if the problem is solvable, or answers that no solution exists, otherwise. The tool allows different search strategies, including informed search algorithms if the user defines a domain-dependent heuristics with additional program rules.
This work was partially supported by MINECO, Spain, grant TIC2017-84453-P, Xunta de Galicia, Spain (GPC ED431B 2019/03 and 2016-2019 ED431G/01, CITIC).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
An interesting topic for future study would be determining integer bounds for the required number of steps n to obtain a plan.
- 2.
- 3.
Systems clingo, gringo and clasp are available at https://potassco.org.
References
Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey. J. Appl. Non-Class. Log. 23(1–2), 2–24 (2013)
Cabalar, P., Diéguez, M.: STELP – a tool for temporal answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 370–375. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_43
Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: telingo = ASP + Time. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR 2019. LNCS, vol. 11481, pp. 256–269. Springer, Cham (2019)
Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75867-9_31
Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), Vienna, Austria (2014)
Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set programming on finite traces. TPLP 18(3–4), 406–420 (2018)
Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68 (2016)
Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), pp. 1070–1080, Seattle, Washington (1988)
Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, UCLA (1968)
Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm. Artificial Intelligence, pp. 375–398. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2_17
Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)
Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801
Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, SFCS 2077, pp. 46–57. IEEE Computer Society, Washington, DC, USA (1977)
Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3. internat. edn. Pearson Education, London (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cabalar, P., Rey, M., Vidal, C. (2019). A Complete Planner for Temporal Answer Set Programming. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_43
Download citation
DOI: https://doi.org/10.1007/978-3-030-30244-3_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30243-6
Online ISBN: 978-3-030-30244-3
eBook Packages: Computer ScienceComputer Science (R0)