Skip to main content

A Complete Planner for Temporal Answer Set Programming

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11805))

Included in the following conference series:

Abstract

In this paper we present tasplan, a complete planner for temporal logic programs. The planner receives a planning specification as input, having the form of a temporal ASP program, and obtains as output one or several alternative (shortest) plans, if the problem is solvable, or answers that no solution exists, otherwise. The tool allows different search strategies, including informed search algorithms if the user defines a domain-dependent heuristics with additional program rules.

This work was partially supported by MINECO, Spain, grant TIC2017-84453-P, Xunta de Galicia, Spain (GPC ED431B 2019/03 and 2016-2019 ED431G/01, CITIC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An interesting topic for future study would be determining integer bounds for the required number of steps n to obtain a plan.

  2. 2.

    https://github.com/jmanuelrey/T-ASPlan/.

  3. 3.

    Systems clingo, gringo and clasp are available at https://potassco.org.

References

  1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Vidal, C.: Temporal equilibrium logic: a survey. J. Appl. Non-Class. Log. 23(1–2), 2–24 (2013)

    Article  MathSciNet  Google Scholar 

  2. Cabalar, P., Diéguez, M.: STELP – a tool for temporal answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 370–375. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_43

    Chapter  Google Scholar 

  3. Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: telingo = ASP + Time. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR 2019. LNCS, vol. 11481, pp. 256–269. Springer, Cham (2019)

    Chapter  Google Scholar 

  4. Cabalar, P., Pérez Vega, G.: Temporal equilibrium logic: a first approach. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp. 241–248. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75867-9_31

    Chapter  Google Scholar 

  5. Cabalar, P., Diéguez, M.: Strong equivalence of non-monotonic temporal theories. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), Vienna, Austria (2014)

    Google Scholar 

  6. Cabalar, P., Kaminski, R., Schaub, T., Schuhmann, A.: Temporal answer set programming on finite traces. TPLP 18(3–4), 406–420 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68 (2016)

    Article  Google Scholar 

  8. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: the potsdam answer set solving collection. AI Commun. 24(2), 107–124 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), pp. 1070–1080, Seattle, Washington (1988)

    Google Scholar 

  10. Kamp, H.: Tense logic and the theory of linear order. Ph.D. thesis, UCLA (1968)

    Google Scholar 

  11. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm. Artificial Intelligence, pp. 375–398. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2_17

    Chapter  MATH  Google Scholar 

  12. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MathSciNet  Google Scholar 

  13. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) NMELP 1996. LNCS, vol. 1216, pp. 57–70. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023801

    Chapter  Google Scholar 

  14. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, SFCS 2077, pp. 46–57. IEEE Computer Society, Washington, DC, USA (1977)

    Google Scholar 

  15. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach, 3. internat. edn. Pearson Education, London (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Cabalar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabalar, P., Rey, M., Vidal, C. (2019). A Complete Planner for Temporal Answer Set Programming. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics