Skip to main content

An Argumentative Characterization of Disjunctive Logic Programming

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11805))

Included in the following conference series:

Abstract

This paper extends the result of Caminada and Schulz [6, 7] by showing that assumption-based argumentation can represent not only normal logic programs, but also disjunctive logic programs. For this, we incorporate a previous work of ours (see [19, 20]), in which reasoning with assumption-based argumentation frameworks is based on certain core logics and the strict/defeasible assumptions may be arbitrary formulas in those logics. In our case, the core logic respects some inference rules for disjunction, which allows disjunctions in the heads of the programs’ rules to be handled properly.

This work is supported by the Israel Science Foundation (grant number 817/15). The first author is also partially supported by the Sofja Kovalevskaja award of the Alexander von Humboldt Foundation, funded by the German Ministry for Education and Research, the FCT projects RIVER (PTDC/CCI-COM/30952/2017) and NOVA LINCS (UID/CEC/04516/2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In many presentations of assumption-based argumentation, extensions are required to be closed, i.e. they should contain any assumption they imply. Since the translation below will always give rise to the so-called flat ABFs (that is, ABFs for which a set of assumptions can never imply assumptions outside the set; See Note 3 below), closure of extensions is trivially satisfied.

  2. 2.

    Since the underlying language consists only of negated atoms or formulas of the form of program rules (see Definition 5), this definition indeed covers all the possible sets \(\mathcal{S}\) of \(\mathcal{L}\)-formulas.

References

  1. Beirlaen, M., Heyninck, J., Straßer, C.: Reasoning by cases in structured argumentation. In: Proceedimgs SAC 2017, pp. 989–994. ACM (2017)

    Google Scholar 

  2. Beirlaen, M., Heyninck, J., Straßer, C.: A critical assessment of Pollock’s work on logic-based argumentation with suppositions. In: Proceedings of the NMR 2018, vol. 20, pp. 63–72 (2018)

    Google Scholar 

  3. Bochman, A.: Collective argumentation and disjunctive logic programming. J. Log. Comput. 13(3), 405–428 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93(1), 63–101 (1997)

    Article  MathSciNet  Google Scholar 

  5. Brass, S., Dix, J.: Characterizations of the disjunctive well-founded semantics: confluent calculi and iterated GCWA. J. Autom. Reason. 20(1–2), 143–165 (1998)

    Article  MathSciNet  Google Scholar 

  6. Caminada, M., Schulz, C.: On the equivalence between assumption-based argumentation and logic programming. J. Artif. Intell. Res. 60, 779–825 (2017)

    Article  MathSciNet  Google Scholar 

  7. Caminada, M., Schulz, C.: On the equivalence between assumption-based argumentation and logic programming (extended abstract). In: Proceedings IJCAI 2018, pp. 5578–5582. ijcai.org (2018)

    Google Scholar 

  8. Craven, R., Toni, F., Williams, M.: Graph-based dispute derivations in assumption-based argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2013. LNCS, vol. 8306, pp. 46–62. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54373-9_4

    Chapter  MATH  Google Scholar 

  9. Čyras, K., Toni, F.: Non-monotonic inference properties for assumption-based argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) TAFA 2015. LNCS, vol. 9524, pp. 92–111. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28460-6_6

    Chapter  MATH  Google Scholar 

  10. Dimopoulos, Y., Nebel, B., Toni, F.: On the computational complexity of assumption-based argumentation for default reasoning. Artif. Intell. 141(1–2), 57–78 (2002)

    Article  MathSciNet  Google Scholar 

  11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–358 (1995)

    Article  MathSciNet  Google Scholar 

  12. Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artif. Intell. 170(2), 114–159 (2006)

    Article  MathSciNet  Google Scholar 

  13. Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based argumentation. In: Frontiers in Artificial Intelligence and Applications, vol. 144, pp. 145–156 (2006)

    Google Scholar 

  14. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. (TODS) 22(3), 364–418 (1997)

    Article  Google Scholar 

  15. Gelfond, M.: Logic programming and reasoning with incomplete information. Ann. Math. Artif. Intell. 12(1–2), 89–116 (1994)

    Article  MathSciNet  Google Scholar 

  16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Programming ICLP 1988, pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  17. Gonçalves, R., Alferes, J.J.: Parametrized logic programming. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 182–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5_17

    Chapter  Google Scholar 

  18. Gottlob, G.: Complexity and expressive power of disjunctive logic programming (research overview). In: Proceedings ICLP 1994, pp. 23–42. MIT Press (1994)

    Google Scholar 

  19. Heyninck, J., Arieli, O.: On the semantics of simple contrapositive assumption-based argumentation frameworks. In: Proceedings COMMA 2018, Frontiers in Artificial Intelligence and Applications, vol. 305, pp. 9–20. IOS Press (2018)

    Google Scholar 

  20. Heyninck, J., Arieli, O.: Simple contrapositive assumption-based frameworks. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) Logic Programming and Nonmonotonic Reasoning, LPNMR 2019. LNCS, vol. 11481, pp. 75–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20528-7_7

    Chapter  Google Scholar 

  21. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-83189-8

    Book  MATH  Google Scholar 

  22. Przymusinski, T.: Stationary semantics for normal and disjunctive logic programs. In: DOOD, vol. 91. Citeseer (1991)

    Google Scholar 

  23. Przymusinski, T.C.: The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae 13(4), 445–463 (1990)

    MathSciNet  MATH  Google Scholar 

  24. Ross, K.A.: A procedural semantics for well-founded negation in logic programs. J. Log. Program. 13(1), 1–22 (1992)

    Article  MathSciNet  Google Scholar 

  25. Sakama, C.: Possible model semantics for disjunctive databases. In: Deductive and Object-Oriented Databases, pp. 369–383 (1990)

    Chapter  Google Scholar 

  26. Schulz, C.: Graphical representation of assumption-based argumentation. In: Proceedings AAAI 2015, pp. 4204–4205. AAAI Press (2015)

    Google Scholar 

  27. Schulz, C., Satoh, K., Toni, F.: Characterising and explaining inconsistency in logic programs. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS, vol. 9345, pp. 467–479. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23264-5_39

    Chapter  MATH  Google Scholar 

  28. Schulz, C., Toni, F.: Justifying answer sets using argumentation. Theory Pract. Log. Program. 16(1), 59–110 (2016)

    Article  MathSciNet  Google Scholar 

  29. Schulz, C., Toni, F.: Complete assumption labellings. In: Proceedings COMMA 2014, Frontiers in Artificial Intelligence and Applications, vol. 266, pp. 405–412. IOS Press (2017)

    Google Scholar 

  30. Schulz, C., Toni, F.: Labellings for assumption-based and abstract argumentation. J. Approx. Reason. 84, 110–149 (2017)

    Article  MathSciNet  Google Scholar 

  31. Su, E.: Extensions of equilibrium logic by modal concepts. Ph.D. thesis, IRIT-Institut de recherche en informatique de Toulouse (2015)

    Google Scholar 

  32. Toni, F.: A generalised framework for dispute derivations in assumption-based argumentation. Artif. Intell. 195, 1–43 (2013)

    Article  MathSciNet  Google Scholar 

  33. Wang, K.: Argumentation-based abduction in disjunctive logic programming. J. Log. Program. 45(1–3), 105–141 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Arieli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heyninck, J., Arieli, O. (2019). An Argumentative Characterization of Disjunctive Logic Programming. In: Moura Oliveira, P., Novais, P., Reis, L. (eds) Progress in Artificial Intelligence. EPIA 2019. Lecture Notes in Computer Science(), vol 11805. Springer, Cham. https://doi.org/10.1007/978-3-030-30244-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30244-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30243-6

  • Online ISBN: 978-3-030-30244-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics