Skip to main content

On Similarity Measures for a Graph-Based Recommender System

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1078))

Included in the following conference series:

Abstract

Recommender systems are drawing increasing attention with several unresolved issues. These systems depend on personal user preferences on items via ratings and recommend items based on choices of similar users. A graph-based recommender system that has ratings of users on items can be shown as a bipartite graph in which vertices match users and items nodes, and edges correspond to ratings. Recommendation generation in a bipartite graph can be moderated as a sub-problem of link prediction. In the relevant literature, modified link prediction methods are employed to differentiate between fundamental relational dualities of like vs. dislike and similar vs. dissimilar. However, the similarity relationships between users/items are often ignored. We propose a new model that utilizes user-user and item-item similarity values with relational dualities in order to improve coverage and hits rate by carefully incorporating similarities. We compare five similarity measures in terms of hits rate and coverage while providing top-N recommendations. We scrutinize how such similarity measures perform with top-N item recommendation processes over the standard MovieLens Hetrec and MovieLens datasets. The experimental results show that hits rate and coverage can be improved by about 7% and 4%, respectively, with Jaccard and Adjusted-Cosine similarity measures being the best performing similarity measures. Significant differences/improvements are observed over the previous CORLP approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, Z., Zeng, D., Chen, H.: A comparative study of recommendation algorithms in E-commerce applications. IEEE Intell. Syst. 22, 68–78 (2007)

    Article  Google Scholar 

  2. Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and personal recommendation. Phys. Rev. 76(4), 046–115 (2007)

    Google Scholar 

  3. Li, X., Chen, H.: Recommendation as link prediction in bipartite graphs: a graph kernel-based machine learning approach. Decis. Support Syst. 54(2), 880–890 (2013)

    Article  Google Scholar 

  4. Getoor, L., Diehl, C.P.: Link mining: a survey. ACM SIGKDD Explor. Newslett. 7(2), 3–12 (2005)

    Article  Google Scholar 

  5. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  6. Xie, F., Chen, Z., Shang, J., Feng, X., Li, J.: A link prediction approach for item recommendation with complex number. Knowl. Based Syst. 81, 148–158 (2015)

    Article  Google Scholar 

  7. Kunegis, J., De Luca, E.W., Albayrak, S.: The link prediction problem in bipartite networks. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 380–389. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_39

    Chapter  Google Scholar 

  8. Harper, F.M., Konstan, J.A.: The MovieLens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5(4), 1–19 (2016)

    Article  Google Scholar 

  9. GroupLens Research Group, May 2011. https://grouplens.org/datasets/hetrec-2011/

  10. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM, New York (2001)

    Google Scholar 

  11. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10

    Chapter  Google Scholar 

  12. Pazzani, M.J.: A framework for collaborative, content-based and demographic filtering. Artif. Intell. Rev. 13(5–6), 393–408 (1999)

    Article  Google Scholar 

  13. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 407–415. ACM, New York (2000)

    Google Scholar 

  14. Kitts, B., Freed, D., Vrieze, M.: Cross-sell: a fast promotion-tunable customer–item recommendation method based on conditional independent probabilities. In: Proceedings of the 10th International Conference on Proceedings of ACM SIGKDD, pp. 437–446. ACM, New York (2000)

    Google Scholar 

  15. Ahn, H.J.: A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem. Inf. Sci. 178(1), 37–51 (2008)

    Article  Google Scholar 

  16. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst. (TOIS) 22(1), 143–177 (2004)

    Article  Google Scholar 

  17. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-N recommendation tasks. In: 4th Proceedings on ACM Conference on RecSys, pp. 39–46. ACM, Barcelona (2010)

    Google Scholar 

  18. Gedikli, F., Jannach, D.: Recommendation based on rating frequencies. In: 4th Proceedings on ACM Conference on RecSys, pp. 26–30. ACM, Barcelona (2010)

    Google Scholar 

  19. Kurt, Z., Özkan, K., Bilge, A., Gerek, Ö.N.: A similarity-inclusive link prediction based recommender system approach. Elektronika IR Elektrotechnika (2019, to appear)

    Google Scholar 

  20. Kurt, Z.: Graph based hybrid recommender systems. (PhD thesis), Anadolu University, Eskişehir (2019)

    Google Scholar 

  21. Huang, Z., Chung, W., Ong, T.H., Chen, H.: A graph-based recommender system for digital library. In: Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 65–73. ACM, Oregon (2002)

    Google Scholar 

  22. Ji, Z., Pi, H., Wei, W., Xiong, B., Wozniak, M., Damasevicius, R.: Recommendation based on review texts and social communities: a hybrid model. IEEE Access 7, 40416–40427 (2019)

    Article  Google Scholar 

  23. Martinčić-Ipšić, S., Močibob, E., Perc, M.: Link prediction on Twitter. PLoS ONE 12(7), e0181079 (2017)

    Article  Google Scholar 

  24. Behera, R., Rath, S., Misra, S., Damaševičius, R., Maskeliūnas, R.: Large scale community detection using a small world model. Appl. Sci. 7(11), 1173 (2017)

    Article  Google Scholar 

  25. De SaÂ, H.R., Prudêncio, R.B.: Supervised link prediction in weighted networks. In: International Joint Conference on Neural Network, pp. 2281–2288. IEEE, USA (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zühal Kurt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurt, Z., Bilge, A., Özkan, K., Gerek, Ö.N. (2019). On Similarity Measures for a Graph-Based Recommender System. In: Damaševičius, R., Vasiljevienė, G. (eds) Information and Software Technologies. ICIST 2019. Communications in Computer and Information Science, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-030-30275-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30275-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30274-0

  • Online ISBN: 978-3-030-30275-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics