Skip to main content

Residual MobileNets

  • Conference paper
  • First Online:
New Trends in Databases and Information Systems (ADBIS 2019)

Abstract

As modern convolutional neural networks become increasingly deeper, they also become slower and require high computational resources beyond the capabilities of many mobile and embedded platforms. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity. In this paper, we propose a novel residual depth-separable convolution block, which is an improvement of the basic building block of MobileNets. We modified the original block by adding an identity shortcut connection (with zero-padding for increasing dimensions) from the input to the output. We demonstrated that the modified architecture with the width multiplier (\(\alpha \)) set to 0.92 slightly outperforms the accuracy and inference time of the baseline MobileNet (\(\alpha = 1\)) on the challenging Places365 dataset while reducing the number of parameters by 14%.

This work has been partially supported by Statutory Funds of Electronics, Telecommunications and Informatics Faculty, Gdansk University of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianco, S., Cadene, R., Celona, L., Napoletano, P.: Benchmark analysis of representative deep neural network architectures. IEEE Access 6 (2018). https://doi.org/10.1109/ACCESS.2018.2877890

    Google Scholar 

  2. Brzeski, A., Grinholc, K., Nowodworski, K., Przybylek, A.: Evaluating performance and accuracy improvements for attention-OCR. In: 18th International Conference on Computer Information Systems and Industrial Management Applications (CISIM 2019), Belgrade, Serbia (2019)

    Google Scholar 

  3. Byra, M., et al.: Impact of ultrasound image reconstruction method on breast lesion classification with neural transfer learning (2018). arXiv:1804.02119

  4. Cychnerski, J., Brzeski, A., Boguszewski, A., Marmolowski, M., Trojanowicz, M.: Clothes detection and classification using convolutional neural networks. In: 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus (2017)

    Google Scholar 

  5. Gholami, A., et al.: SqueezeNext: hardware-aware neural network design. In: ECV Workshop at CVPR 2018, Utah, USA (2018)

    Google Scholar 

  6. Han, D., Kim, J., Kim, J.: Deep pyramidal residual networks. In: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV (2016)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications (2017). arXiv:1704.04861

  10. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)0.5 MB model size (2016). arXiv:1602.07360

  11. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. In: 2014 British Machine Vision Conference, Nottingham, UK (2014)

    Google Scholar 

  12. Janczyk, K., Czuszynski, K., Ruminski, J.: Digits recognition with quadrant photodiode and convolutional neural network. In: 11th International Conference on Human System Interaction (HSI 2018), Gdansk, Poland (2018)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Mehta, S., Rastegari, M., Shapiro, L., Hajishirzi, H.: ESPNetv2: a light-weight, power efficient, and general purpose convolutional neural network (2018). arXiv:1811.11431

  15. Podlodowski, L., Roziewski, S., Nurzynski, M.: An ensemble of deep convolutional neural networks for marking hair follicles on microscopic images. In: 2018 Federated Conference on Computer Science and Information Systems (FedCSIS 2018), Poznan, Poland (2018). https://doi.org/10.15439/2018F389

  16. Przybylek, K., Shkroba, I.: Crowd counting á la Bourdieu. In: Workshop on Modern Approaches in Data Engineering and Information System Design at ADBIS 2019, Bled, Slovenia (2019)

    Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV (2016)

    Google Scholar 

  18. Sandler, S., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: MobileNetV2: inverted residuals and linear bottlenecks (2018). arXiv:1801.04381

  19. Siam, M., Gamal, M., AbdelRazek, M., Yogomain, S., Jagersand, M., Zhang, H.: A comparative study of real-time semantic segmentation for autonomous driving. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Utah, USA (2018)

    Google Scholar 

  20. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices (2017). arXiv:1707.01083

  21. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Przybylek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brzeski, A., Grinholc, K., Nowodworski, K., Przybylek, A. (2019). Residual MobileNets. In: Welzer, T., et al. New Trends in Databases and Information Systems. ADBIS 2019. Communications in Computer and Information Science, vol 1064. Springer, Cham. https://doi.org/10.1007/978-3-030-30278-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30278-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30277-1

  • Online ISBN: 978-3-030-30278-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics