Abstract
We present a new replay-based method of continual classification learning that we term “conditional replay” which generates samples and labels together by sampling from a distribution conditioned on the class. We compare conditional replay to another replay-based continual learning paradigm (which we term “marginal replay”) that generates samples independently of their class and assigns labels in a separate step. The main improvement in conditional replay is that labels for generated samples need not be inferred, which reduces the margin for error in complex continual classification learning tasks. We demonstrate the effectiveness of this approach using novel and standard benchmarks constructed from MNIST and FashionMNIST data, and compare to the regularization-based elastic weight consolidation (EWC) method [17, 34].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9
Aljundi, R., Chakravarty, P., Tuytelaars, T.: Expert gate lifelong learning with a network of experts. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3366–3375 (2017)
Aljundi, R., Rohrbach, M., Tuytelaars, T.: Selfless sequential learning. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Bkxbrn0cYX
Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33
Fernando, C., et al.: PathNet: evolution channels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734 (2017)
French, R.: Catastrophic forgetting in connectionist networks. Trends Cognit. Sci. 3(4), 128 (1999)
Gepperth, A., Wiech, F.: Simplified computation and interpretation of fisher matrices in incremental learning with deep neural networks. In: ICANN (2019, Submitted)
Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: European Symposium on Artificial Neural Networks (ESANN) (2016)
Gepperth, A., Karaoguz, C.: A bio-inspired incremental learning architecture for applied perceptual problems. Cognit. Comput. 8(5), 924–934 (2016). https://doi.org/10.1007/s12559-016-9389-5
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks (2013). https://doi.org/10.1088/1751-8113/44/8/085201. http://arxiv.org/abs/1312.6211
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors, pp. 1–18 (2012). arXiv:1207.0580
Kamra, N., Gupta, U., Liu, Y.: Deep generative dual memory network for continual learning. ArXiv e-prints, arXiv:1710.10368, October 2017
Kemker, R., Kanan, C.: FearNet: brain-inspired model for incremental learning. arXiv preprint arXiv:1711.10563 (2017)
Kim, H., Kim, S., Lee, J.: Keep and learn: continual learning by constraining the latent space for knowledge preservation in neural networks. CoRR abs/1805.10784 (2018). http://arxiv.org/abs/1805.10784
Kim, H.-E., Kim, S., Lee, J.: Keep and learn: continual learning by constraining the latent space for knowledge preservation in neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 520–528. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_59
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks (2016). https://doi.org/10.1073/pnas.1611835114. http://arxiv.org/abs/1612.00796
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning apllied to document recognition (1998). http://ieeexplore.ieee.org/document/726791/#full-text-section
Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic forgetting by incremental moment matching. In: Advances in Neural Information Processing Systems, pp. 4655–4665 (2017)
Lesort, T., Goudou, J.F., Filliat, D.: Training discriminative models to evaluate generative ones (2018)
Lesort, T., Caselles-Dupré, H., Garcia- Ortiz, M., Stoian, A., Filliat, D.: Generative models from the perspective of continual learning. arXiv e-prints arXiv:1812.09111, December 2018
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2018)
Liu, X., Masana, M., Herranz, L., Van de Weijer, J., Lopez, A.M., Bagdanov, A.D.: Rotate your networks: better weight consolidation and less catastrophic forgetting. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2262–2268. IEEE (2018)
Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7765–7773 (2018)
Mirza, M., Osindero, S.: Conditional generative adversarial nets (2014)
Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. arXiv preprint arXiv:1802.07569 (2018)
Pfülb, B., Gepperth, A.: A comprehensive, application-oriented study of catastrophic forgetting in DNNS. In: International Conference on Learning Representations (ICLR) (2019, Accepted)
Pfülb, B., Gepperth, A., Abdullah, S., Kilian, A.: Catastrophic forgetting: still a problem for DNNs. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 487–497. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_48
Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the CVPR (2017)
Ren, B., Wang, H., Li, J., Gao, H.: Life-long learning based on dynamic combination model. Appl. Soft Comput. 56, 398–404 (2017)
Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)
Serrà, J., Suris, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. In: The 35th International Conference on Machine Learning (ICML 2018) (2018). https://arxiv.org/abs/1801.01423
Shah, H., Javed, K., Shafait, F.: Distillation techniques for pseudo-rehearsal based incremental learning. arXiv preprint arXiv:1807.02799 (2018)
Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: Advances in Neural Information Processing Systems, pp. 2990–2999 (2017)
Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors without catastrophic forgetting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3400–3409 (2017)
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 3483–3491. Curran Associates, Inc. (2015)
Srivastava, R.K., Masci, J., Kazerounian, S., Gomez, F., Schmidhuber, J.: Compete to compute. In: NIPS, pp. 2310–2318 (2013)
Wu, C., Herranz, L., Liu, X., Wang, Y., van de Weijer, J., Raducanu, B.: Memory replay GANs: learning to generate images from new categories without forgetting. arXiv preprint arXiv:1809.02058 (2018)
Wu, Y., et al.: Incremental classifier learning with generative adversarial networks. CoRR abs/1802.00853 (2018). http://arxiv.org/abs/1802.00853
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms, pp. 1–6 (2017). http://arxiv.org/abs/1708.07747
Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Lesort, T., Gepperth, A., Stoian, A., Filliat, D. (2019). Marginal Replay vs Conditional Replay for Continual Learning. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019. Lecture Notes in Computer Science(), vol 11728. Springer, Cham. https://doi.org/10.1007/978-3-030-30484-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-030-30484-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30483-6
Online ISBN: 978-3-030-30484-3
eBook Packages: Computer ScienceComputer Science (R0)