Skip to main content

Joint Metric Learning on Riemannian Manifold of Global Gaussian Distributions

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11728))

Included in the following conference series:

  • 3939 Accesses

Abstract

In many computer vision tasks, images or image sets can be modeled as a Gaussian distribution to capture the underlying data distribution. The challenge of using Gaussians to model the vision data is that the space of Gaussians is not a linear space. From the perspective of information geometry, the Gaussians lie on a specific Riemannian Manifold. In this paper, we present a joint metric learning (JML) model on Riemannian Manifold of Gaussian distributions. The distance between two Gaussians is defined as the sum of the Mahalanobis distance between the mean vectors and the log-Euclidean distance (LED) between the covariance matrices. We formulate the multi-metric learning model by jointly learning the Mahalanobis distance and the log-Euclidean distance with pairwise constraints. Sample pair weights are embedded to select the most informative pairs to learn the discriminative distance metric. Experiments on video based face recognition, object recognition and material classification show that JML is superior to the state-of-the-art metric learning algorithms for Gaussians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvo, M., Oller, J.M.: A distance between multivariate normal distributions based in an embedding into the Siegel group (1990). https://doi.org/10.1016/0047-259X(90)90026-E

    Article  MathSciNet  Google Scholar 

  2. Cevikalp, H., Triggs, B.: Face recognition based on image sets. In: CVPR, pp. 2567–2573 (2010). https://doi.org/10.1109/CVPR.2010.5539965

  3. Gong, L., Wang, T., Liu, F.: Shape of Gaussians as feature descriptors. In: CVPR, pp. 2366–2371 (2009). https://doi.org/10.1109/CVPR.2009.5206506

  4. Harandi, M., Salzmann, M., Hartley, R.: Dimensionality reduction on spd manifolds: the emergence of geometry-aware methods. TPAMI (2017). https://doi.org/10.1109/TPAMI.2017.2655048

    Article  Google Scholar 

  5. Harandi, M.T., Sanderson, C., Hartley, R., Lovell, B.C.: Sparse coding and dictionary learning for symmetric positive definite matrices: a kernel approach. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 216–229. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_16

    Chapter  Google Scholar 

  6. Huang, Z., Wang, R., Shan, S., Chen, X.: Projection metric learning on Grassmann manifold with application to video based face recognition. In: CVPR, pp. 140–149 (2015). https://doi.org/10.1109/CVPR.2015.7298609

  7. Huang, Z., Wang, R., Shan, S., Li, X., Chen, X.: Log-Euclidean metric learning on symmetric positive definite manifold with application to image set classification. In: ICML, pp. 720–729 (2015)

    Google Scholar 

  8. Jegou, H., Perronnin, F., Douze, M., Sánchez, J., Perez, P., Schmid, C.: Aggregating local image descriptors into compact codes. TPAMI 34(9), 1704–1716 (2012). https://doi.org/10.1109/tpami.2011.235

    Article  Google Scholar 

  9. Kim, M., Kumar, S., Pavlovic, V., Rowley, H.: Face tracking and recognition with visual constraints in real-world videos. In: CVPR, pp. 1–8 (2008). https://doi.org/10.1109/CVPR.2008.4587572

  10. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: CVPR, vol. 2, pp. 402–409 (2003). https://doi.org/10.1109/CVPR.2003.1211497

  11. Li, P., Wang, Q., Zeng, H., Zhang, L.: Local log-Euclidean multivariate Gaussian descriptor and its application to image classification. TPAMI 39(4), 803–817 (2017). https://doi.org/10.1109/TPAMI.2016.2560816

    Article  Google Scholar 

  12. Li, P., Wang, Q., Zhang, L.: A novel earth mover’s distance methodology for image matching with Gaussian mixture models. In: ICCV, pp. 1689–1696 (2013). https://doi.org/10.1109/ICCV.2013.212

  13. Li, P., Zeng, H., Wang, Q., Shiu, S.C., Zhang, L.: High-order local pooling and encoding Gaussians over a dictionary of Gaussians. TIP 26(7), 3372–3384 (2017). https://doi.org/10.1109/TIP.2017.2695884

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, Z., Rock, J., Wang, Y., Forsyth, D.: Non-parametric filtering for geometric detail extraction and material representation. In: CVPR, June 2013. https://doi.org/10.1109/CVPR.2013.129

  15. Lovri, M., Min-Oo, M., Ruh, E.A.: Multivariate normal distributions parametrized as a riemannian symmetric space. JMVA 74(1), 36–48 (2000). https://doi.org/10.1006/jmva.1999.1853

    Article  MathSciNet  MATH  Google Scholar 

  16. Matsukawa, T., Okabe, T., Suzuki, E., Sato, Y.: Hierarchical Gaussian descriptor for person re-identification. In: CVPR, pp. 1363–1372 (2016). https://doi.org/10.1109/CVPR.2016.152

  17. Nakayama, H., Harada, T., Kuniyoshi, Y.: Global Gaussian approach for scene categorization using information geometry. In: CVPR, pp. 2336–2343 (2010). https://doi.org/10.1109/CVPR.2010.5539921

  18. Nchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: theory and practice. IJCV 105(3), 222–245 (2013). https://doi.org/10.1007/s11263-013-0636-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Niesen, U., Shah, D., Wornell, G.W.: Adaptive alternating minimization algorithms. TIT 55(3), 1423–1429 (2008). https://doi.org/10.1109/tit.2008.2011442

    Article  MathSciNet  MATH  Google Scholar 

  20. Serra, G., Grana, C., Manfredi, M., Cucchiara, R.: Gold: Gaussians of local descriptors for image representation. CVIU 134, 22–32 (2015). https://doi.org/10.1016/j.cviu.2015.01.005

    Article  Google Scholar 

  21. Sharan, L., Rosenholtz, R., Adelson, E.H.: Material perception: what can you see in a brief glance? J. Vis. 9(8), 784 (2009)

    Article  Google Scholar 

  22. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR, pp. 3360–3367 (2010). https://doi.org/10.1109/CVPR.2010.5540018

  23. Wang, Q., Li, P., Zhang, L., Zuo, W.: Towards effective codebookless model for image classification. PR 59(C), 63–71 (2016). https://doi.org/10.1016/j.patcog.2016.03.004

    Article  Google Scholar 

  24. Wang, R., Chen, X.: Manifold discriminant analysis. In: CVPR, pp. 429–436 (2009). https://doi.org/10.1109/CVPRW.2009.5206850

  25. Wang, W., Wang, R., Huang, Z., Shan, S., Chen, X.: Discriminant analysis on Riemannian Manifold of Gaussian distributions for face recognition with image sets. TIP 27(1), 151–163 (2018). https://doi.org/10.1109/TIP.2017.2746993

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, W., Wang, R., Huang, Z., Shan, S., Chen, X.: Discriminant analysis on Riemannian Manifold of Gaussian distributions for face recognition with image sets. In: CVPR, pp. 2048–2057 (2015). https://doi.org/10.1109/CVPR.2015.7298816

  27. Wang, W., Wang, R., Shan, S., Chen, X.: Discriminative covariance oriented representation learning for face recognition with image sets. In: CVPR, pp. 5599–5608 (2017). https://doi.org/10.1109/CVPR.2017.609

  28. Zadeh, P.H., Hosseini, R., Sra, S.: Geometric mean metric learning. In: ICML, pp. 2464–2471 (2016)

    Google Scholar 

  29. Zhou, X., Cui, N., Li, Z., Liang, F., Huang, T.S.: Hierarchical Gaussianization for image classification. In: ICCV, pp. 1971–1977 (2009). https://doi.org/10.1109/ICCV.2009.5459435

  30. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_11

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61502332, 61876127 and 61732011, Natural Science Foundation of Tianjin Under Grants 17JCZDJC30800, Key Scientific and Technological Support Projects of Tianjin Key R&D Program 18YFZCGX00390 and 18YFZCGX00680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nie, Q., Zhou, B., Zhu, P., Hu, Q., Cheng, H. (2019). Joint Metric Learning on Riemannian Manifold of Global Gaussian Distributions. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019. Lecture Notes in Computer Science(), vol 11728. Springer, Cham. https://doi.org/10.1007/978-3-030-30484-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30484-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30483-6

  • Online ISBN: 978-3-030-30484-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics