Skip to main content

Playing the Large Margin Preference Game

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning (ICANN 2019)

Abstract

We propose a large margin preference learning model based on game theory to solve the label ranking problem. Specifically, we show the proposed formulation is able to perform multiclass classification by solving a single convex optimization problem. Generally, such formulation, although theoretically well-founded, requires to learn a large number of parameters. To reduce the computational complexity, we propose a strategy based on the solution of smaller subproblems, that can be further optimized by exploiting techniques borrowed from multi-armed bandits literature. Finally, we show how the proposed framework exhibits state-of-the-art results on many benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiolli, F., Da San Martino, G., Sperduti, A.: A kernel method for the optimization of the margin distribution. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008. LNCS, vol. 5163, pp. 305–314. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87536-9_32

    Chapter  Google Scholar 

  2. Aiolli, F., Sperduti, A.: A preference optimization based unifying framework for supervised learning problems. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning, pp. 19–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6_2

    Chapter  MATH  Google Scholar 

  3. Bopardikar, S.D., Borri, A., Hespanha, J.P., Prandini, M., Benedetto, M.D.D.: Randomized sampling for large zero-sum games. In: 49th IEEE Conference on Decision and Control (CDC), pp. 7675–7680 (2010). https://doi.org/10.1109/CDC.2010.5717870

  4. Bopardikar, S.D., Langbort, C.: Incremental approximate saddle-point computation in zero-sum matrix games. In: 53rd IEEE Conference on Decision and Control, pp. 1936–1941 (2014). https://doi.org/10.1109/CDC.2014.7039681

  5. Brown, G.W.: Iterative solutions of games by fictitious play. In: Activity Analysis of Production and Allocation, pp. 374–376 (1951)

    Google Scholar 

  6. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Willey, Hoboken (1973)

    MATH  Google Scholar 

  7. Freund, Y., Schapire, R.E.: Game theory, on-line prediction and boosting. In: COLT, pp. 325–332 (1996). https://doi.org/10.1145/238061.238163

  8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  9. Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights. Games Econ. Behav. 29(1–2), 79–103 (1999). https://doi.org/10.1006/jcss.1997.1504

    Article  MathSciNet  MATH  Google Scholar 

  10. Fürnkranz, J., Hüllermeier, E.: Preference Learning, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14125-6

    Book  MATH  Google Scholar 

  11. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: a new approach to multiclass classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36169-3_29

    Chapter  Google Scholar 

  12. Hayashi, Y., Nakano, S.: Use of a recursive-rule extraction algorithm with j48graft to achieve highly accurate and concise rule extraction from a large breast cancer dataset. Inform. Med. Unlocked 1, 9–16 (2015). https://doi.org/10.1016/j.imu.2015.12.002

    Article  Google Scholar 

  13. Ioannidis, S., Loiseau, P.: Linear regression as a non-cooperative game. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 277–290. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45046-4_23

    Chapter  Google Scholar 

  14. von Neumann, J.: Zur theorie der gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)

    Article  MathSciNet  Google Scholar 

  15. Nilsson, N.J.: Learning machines: foundations of trainable pattern-classifying systems (1965)

    Google Scholar 

  16. Polato, M., Aiolli, F.: A game-theoretic framework for interpretable preference and feature learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 659–668. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_65

    Chapter  Google Scholar 

  17. Schapire, R.E., Freund, Y., Barlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. In: Proceedings of the Fourteenth International Conference on Machine Learning, ICML 1997, pp. 322–330 (1997)

    Google Scholar 

  18. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the Twenty-first International Conference on Machine Learning, ICML 2004, 104 p. ACM (2004). https://doi.org/10.1145/1015330.1015341

  20. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-2440-0

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Polato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polato, M., Faggioli, G., Lauriola, I., Aiolli, F. (2019). Playing the Large Margin Preference Game. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Deep Learning. ICANN 2019. Lecture Notes in Computer Science(), vol 11728. Springer, Cham. https://doi.org/10.1007/978-3-030-30484-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30484-3_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30483-6

  • Online ISBN: 978-3-030-30484-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics