Skip to main content

Abstract

Capsule Networks (CN) offer new architectures for Deep Learning (DL) community. Though its effectiveness has been demonstrated in MNIST and smallNORB datasets, the networks still face challenges in other datasets for images with distinct contexts. In this research, we improve the design of CN (Vector version) namely we expand more Pooling layers to filter image backgrounds and increase Reconstruction layers to make better image restoration. Additionally, we perform experiments to compare accuracy and speed of CN versus DL models. In DL models, we utilize Inception V3 and DenseNet V201 for powerful computers besides NASNet, MobileNet V1 and MobileNet V2 for small and embedded devices. We evaluate our models on a fingerspelling alphabet dataset from American Sign Language (ASL). The results show that CNs perform comparably to DL models while dramatically reducing training time. We also make a demonstration and give a link for the purpose of illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/grassknoted/asl-alphabet.

  2. 2.

    http://bit.ly/2O4sJSU.

References

  1. Ameen, S., Vadera, S.: A convolutional neural network to classify American sign language fingerspelling from depth and colour images. Expert Syst. 34(3), e12197 (2017). https://doi.org/10.1111/exsy.12197

    Article  Google Scholar 

  2. Bheda, V., Radpour, D.: Using deep convolutional networks for gesture recognition in American sign language. arXiv preprint arXiv:1710.06836 (2017)

  3. Garcia, B., Viesca, S.A.: Real-time American sign language recognition with convolutional neural networks. Convolutional Neural Networks Vis. Recogn. (2016)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  5. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with em routing. In: 6th International Conference on Learning Representations, ICLR (2018)

    Google Scholar 

  6. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017). https://doi.org/10.1109/CVPR.2017.243

  8. Kang, B., Tripathi, S., Nguyen, T.Q.: Real-time sign language fingerspelling recognition using convolutional neural networks from depth map. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 136–140. IEEE (2015). https://doi.org/10.1109/ACPR.2015.7486481

  9. Kuznetsova, A., Leal-Taixé, L., Rosenhahn, B.: Real-time sign language recognition using a consumer depth camera. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 83–90 (2013). https://doi.org/10.1109/ICCVW.2013.18

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  11. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances in Neural Information Processing Systems, pp. 3856–3866 (2017)

    Google Scholar 

  12. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474

  13. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems, pp. 2377–2385 (2015)

    Google Scholar 

  14. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015). https://doi.org/10.1109/CVPR.2015.7298594

  15. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

  16. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using dropconnect. In: International Conference on Machine Learning, pp. 1058–1066 (2013)

    Google Scholar 

  17. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018). https://doi.org/10.1109/CVPR.2018.00907

Download references

Acknowledgements

The reviewers are gratefully acknowledged for their insightful comments. We also thank CISUC - Center of Informatics and Systems of the University of Coimbra for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu Phong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, H.P., Ribeiro, B. (2019). Advanced Capsule Networks via Context Awareness. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics