Skip to main content

Probabilistic Bounds for Approximation by Neural Networks

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11727))

Included in the following conference series:

  • 2898 Accesses

Abstract

A probabilistic model describing relevance of tasks to be computed by a class of feedforward networks is studied. Bounds on correlations of network input-output functions with almost all randomly-chosen functions are derived. Impact of sizes of function domains on correlations are analyzed from the point of view of the concentration of measure phenomenon. It is shown that on large domains, errors of approximation of randomly chosen functions by fixed input-output functions are almost deterministic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito, Y.: Finite mapping by neural networks and truth functions. Math. Sci. 17, 69–77 (1992)

    MathSciNet  MATH  Google Scholar 

  2. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143–195 (1999). https://doi.org/10.1017/S0962492900002919

    Article  MathSciNet  MATH  Google Scholar 

  3. Bengio, Y., Delalleau, O., Roux, N.L.: The curse of highly variable functions for local kernel machines. In: Advances in Neural Information Processing Systems, vol. 18, pp. 107–114. MIT Press (2006)

    Google Scholar 

  4. Kůrková, V.: Constructive lower bounds on model complexity of shallow perceptron networks. Neural Comput. Appl. 29, 305– 315 (2018). https://doi.org/10.1007/s00521-017-2965-0

    Article  Google Scholar 

  5. Kůrková, V.: Limitations of shallow networks representing finite mappings. Neural Comput. Appl. (2018). https://doi.org/10.1007/s00521-018-3680-1

    Article  Google Scholar 

  6. Lin, H., Tegmark, M., Rolnick, D.: Why does deep and cheap learning work so well? J. Stat. Phys. 168, 1223–1247 (2017). https://doi.org/10.1007/s10955-017-1836-5

    Article  MathSciNet  Google Scholar 

  7. Kainen, P.C., Kůrková, V.: Quasiorthogonal dimension of Euclidean spaces. Appl. Math. Lett. 6, 7–10 (1993). https://doi.org/10.1016/0893-9659(93)90023-G

    Article  MathSciNet  MATH  Google Scholar 

  8. Kůrková, V., Sanguineti, M.: Classification by sparse neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2018.2888517

    Article  MATH  Google Scholar 

  9. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963). https://doi.org/10.1080/01621459.1963.10500830

    Article  MathSciNet  MATH  Google Scholar 

  10. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952). https://doi.org/10.1214/aoms/1177729330

    Article  MathSciNet  MATH  Google Scholar 

  11. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. 19, 357–367 (1967). https://doi.org/10.2748/tmj/1178243286

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511581274

  13. Ball, K.: An elementary introduction to modern convex geometry. In: Levy, S. (ed.) Flavors of Geometry, pp. 1–58. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0039-7

    MATH  Google Scholar 

  15. Kůrková, V., Sanguineti, M.: Probabilistic lower bounds for approximation by shallow perceptron networks. Neural Netw. 91, 34–41 (2017). https://doi.org/10.1016/j.neunet.2017.04.003

    Article  Google Scholar 

  16. Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension. J. Comb. Theory A 69(2), 217–232 (1995). https://doi.org/10.1016/0097-3165(95)90052-7

    Article  MathSciNet  MATH  Google Scholar 

  17. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. Am. Math. Soc. 39, 1–49 (2002). https://doi.org/10.1090/S0273-0979-01-00923-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1997). https://doi.org/10.1007/978-1-4757-3264-1

    Book  Google Scholar 

  19. Gorban, A., Tyukin, I.: Stochastic separation theorems. Neural Netw. 94, 255–259 (2017). https://doi.org/10.1016/j.neunet.2017.07.014

    Article  Google Scholar 

  20. Gorban, A.N., Golubkov, A., Grechuk, B., Mirkes, E.M., Tyukin, I.Y.: Correction of AI systems by linear discriminants: probabilistic foundations. Inf. Sci. 466, 303–322 (2018). https://doi.org/10.1016/j.ins.2018.07.040

    Article  MathSciNet  Google Scholar 

  21. Rennie, J., Shih, L., Teevan, J., Karger, D.: Tackling the poor assumptions of naive Bayes classifiers. In: Proceedings of 20th International Conference on Machine Learning (ICML 2003), pp. 616–623 (2003)

    Google Scholar 

Download references

Acknowledgments

V. K. was partially supported by the Czech Grant Foundation grant GA19-05704S and the institutional support of the Institute of Computer Science RVO 67985807.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Věra Kůrková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kůrková, V. (2019). Probabilistic Bounds for Approximation by Neural Networks. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics