Skip to main content

FMNet: Multi-agent Cooperation by Communicating with Featured Message Network

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11727))

Included in the following conference series:

  • 2900 Accesses

Abstract

Multi-agent systems are taking great part in nowadays industries. Cooperative environments may help agents perform better, but the training process is usually time consuming and costly. Although the training process can be speeded up by communicating with important information (such as observations, action sequence, model data and other potential data) between agents, redundant information is still a disturbance term. In this paper, we present a method, called Featured Message Network, which uses a fixed random network to extract features of information from agents as featured message. By communicating with featured messages, agents can cooperate more efficiently while not suffering from useful information loss or redundant information disturbing. We optimized a traditional Deep Q-learning system with our method. We tested our method on Meeting in a Grid problem and experimental results show that training process becomes faster and more stable with our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amato, C., Bernstein, D.S., Zilberstein, S.: Optimal fixed-size controllers for decentralized pomdps. In: Proceedings of the AAMAS Workshop on Multi-Agent Sequential Decision Making in Uncertain Domains (MSDM) (2006)

    Google Scholar 

  2. Amato, C., Zilberstein, S.: Achieving goals in decentralized POMDPs. In: Proceedings of The 8th International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, vol. 1, pp. 593–600 (2009)

    Google Scholar 

  3. Banerjee, B., Peng, J.: Adaptive policy gradient in multiagent learning. In: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, ACM, pp. 686–692 (2003). https://doi.org/10.1145/860575.860686

  4. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of decentralized control of markov decision processes. Math. Oper. Res. 27(4), 819–840 (2002). https://doi.org/10.1287/moor.27.4.819.297

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein, D.S., Hansen, E.A., Zilberstein, S.: Bounded policy iteration for decentralized pomdps. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI), pp. 52–57 (2005)

    Google Scholar 

  6. Bowling, M., Veloso, M.: An analysis of stochastic game theory for multiagent reinforcement learning. Technical report, Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science (2000)

    Google Scholar 

  7. Bowling, M., Veloso, M.: Multiagent learning using a variable learning rate. Artif. Intell. 136(2), 215–250 (2002). https://doi.org/10.1016/s0004-3702(02)00121-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random network distillation. arXiv preprint arXiv:1810.12894 (2018)

  9. Cao, K., Lazaridou, A., Lanctot, M., Leibo, J.Z., Tuyls, K., Clark, S.: Emergent communication through negotiation. arXiv preprint arXiv:1804.03980 (2018)

  10. de Cote, E.M., Lazaric, A., Restelli, M.: Learning to cooperate in multi-agent social dilemmas. In: AAMAS, vol. 6, pp. 783–785 (2006). https://doi.org/10.1145/1160633.1160770

  11. Dolcetta, I.C., Ishii, H.: Approximate solutions of the bellman equation of deterministic control theory. Appl. Math. Optim. 11(1), 161–181 (1984). https://doi.org/10.1007/bf01442176

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferber, J., Weiss, G.: Multi-agent Systems: An Introduction to Distributed Artificial Intelligence, vol. 1, Addison-Wesley Reading (1999)

    Google Scholar 

  13. Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 2137–2145 (2016)

    Google Scholar 

  14. Foerster, J., Chen, R.Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., Mordatch, I.: Learning with opponent-learning awareness. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 122–130 (2018)

    Google Scholar 

  15. Foerster, J., et al.: Stabilising experience replay for deep multi-agent reinforcement learning. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70. pp. 1146–1155 (2017) JMLR.org

  16. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially observable stochastic games. In: AAAI, vol. 4, pp. 709–715 (2004)

    Google Scholar 

  17. Havrylov, S., Titov, I.: Emergence of language with multi-agent games: Learning to communicate with sequences of symbols. In: Advances in Neural Information Processing Systems, pp. 2149–2159 (2017)

    Google Scholar 

  18. Huang, X., Xiao, S.: Self-augmenting strategy for reinforcement learning. In: Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence, ACM, pp. 1–4 (2017). https://doi.org/10.1145/3168390.3168392

  19. Ishii, S., Fujita, H., Mitsutake, M., Yamazaki, T., Matsuda, J., Matsuno, Y.: A reinforcement learning scheme for a partially-observable multi-agent game. Mach. Learn. 59(1–2), 31–54 (2005). https://doi.org/10.1007/s10994-005-0461-8

    Article  MATH  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Kok, J. R., Vlassis, N.: Sparse cooperative q-learning. In: Proceedings of the Twenty-First International Conference on Machine Learning, ACM, p. 61 (2004). https://doi.org/10.1145/1015330.1015410

  22. Kok, J.R., Vlassis, N.: Collaborative multiagent reinforcement learning by payoff propagation. J. Mach. Learn. Res. 7, 1789–1828 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Kuhnle, A., Schaarschmidt, M., Fricke, K.: Tensorforce: a tensorflow library for applied reinforcement learning (2017). https://github.com/tensorforce/tensorforce

  24. Lazaridou, A., Peysakhovich, A., Baroni, M.: Multi-agent cooperation and the emergence of (natural) language. arXiv preprint arXiv:1612.07182 (2016)

  25. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  26. McCandlish, S., Kaplan, J., Amodei, D., Team, O.: An Empirical Model of Large-Batch Training. arXiv preprint arXiv:1812.06162 (2018)

  27. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  28. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    Article  Google Scholar 

  29. Nair, R., Tambe, M., Yokoo, M., Pynadath, D., Marsella, S.: Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In: IJCAI, vol. 3, pp. 705–711 (2003)

    Google Scholar 

  30. Omidshafiei, S., Pazis, J., Amato, C., How, J.P., Vian, J.: Deep decentralized multi-task multi-agent reinforcement learning under partial observability. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2681–2690 (2017). JMLR.org

  31. Rashid, T., Samvelyan, M., de Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.: QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv preprint arXiv:1803.11485 (2018)

  32. Schaarschmidt, M., Kuhnle, A., Ellis, B., Fricke, K., Gessert, F., Yoneki, E.: Lift: reinforcement learning in computer systems by learning from demonstrations. arXiv preprint arXiv:1808.07903 (2018)

  33. Schulman, J., Levine, S., Abbeel, P., Jordan, M.I., Moritz, P.: Trust region policy optimization. In: ICML, vol. 37, pp. 1889–1897 (2015)

    Google Scholar 

  34. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  35. Sukhbaatar, S., Fergus, R.: Learning multiagent communication with backpropagation. In: Advances in Neural Information Processing Systems, pp. 2244–2252 (2016)

    Google Scholar 

  36. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction (1998). https://doi.org/10.1109/tnn.1998.712192

    Article  Google Scholar 

  37. Tampuu, A., et al.: Multiagent cooperation and competition with deep reinforcement learning. PLoS ONE 12(4), e0172395 (2017). https://doi.org/10.1371/journal.pone.0172395

    Article  Google Scholar 

  38. Varshavskaya, P., Kaelbling, L.P., Rus, D.: Efficient distributed reinforcement learning through agreement. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds.) Distributed Autonomous Robotic Systems, vol. 8, pp. 367–378. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00644-9_33

    Chapter  Google Scholar 

  39. Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., Wang, J.: Mean field multi-agent reinforcement learning. arXiv preprint arXiv:1802.05438 (2018)

  40. Yu, C., Zhang, M., Ren, F.: Emotional multiagent reinforcement learning in social dilemmas. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS (LNAI), vol. 8291, pp. 372–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44927-7_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangjiu Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, J., Xiao, S., Xun, L. (2019). FMNet: Multi-agent Cooperation by Communicating with Featured Message Network. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics