Skip to main content

Sequence Disambiguation with Synaptic Traces in Associative Neural Networks

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation (ICANN 2019)

Abstract

Among the abilities that a sequence processing network should possess sequence disambiguation, that is, the ability to let temporal context information influence the evolution of the network dynamics, is one of the most important. In this work we propose an instance of the Bayesian Confidence Propagation Neural Network (BCPNN) that learns sequences with probabilistic associative learning and is able to disambiguate sequences with the use of synaptic traces (low pass filtered versions of the activity). We describe first how the BCPNN achieves both sequence recall and sequence learning from temporal input. Our main result is that the BCPNN network equipped with dynamical memory in the form of synaptic traces is capable of solving the sequence disambiguation problem in a reliable way. We characterize the relationship between the sequence disambiguation capabilities of the network and its dynamical parameters. Furthermore, we show that the inclusion of an additional fast synaptic trace greatly increases the network disambiguation capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lashley, K.: The problem of serial order in behavior. In: Cerebral Mechanisms in Behavior, pp. 112–136 (1951)

    Google Scholar 

  2. Koedijker, J.M., Oudejans, R.R., Beek, P.J.: Interference effects in learning similar sequences of discrete movements. J. Mot. Behav. 42(4), 209–222 (2010)

    Article  Google Scholar 

  3. Panzer, S., Wilde, H., Shea, C.H.: Learning of similar complex movement sequences: proactive and retroactive effects on learning. J. Mot. Behav. 38(1), 60–70 (2006)

    Article  Google Scholar 

  4. Agster, K.L., Fortin, N.J., Eichenbaum, H.: The hippocampus and disambiguation of overlapping sequences. J. Neurosci. 22(13), 5760–5768 (2002)

    Article  Google Scholar 

  5. Levy, W.B.: A sequence predicting ca3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus 6(6), 579–590 (1996)

    Article  MathSciNet  Google Scholar 

  6. Rajan, K., Harvey, C.D., Tank, D.W.: Recurrent network models of sequence generation and memory. Neuron 90(1), 128–142 (2016)

    Article  Google Scholar 

  7. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009)

    Article  Google Scholar 

  8. Wang, Q., Rothkopf, C.A., Triesch, J.: A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity. PLoS Comput. Biol. 13(8), e1005632 (2017)

    Article  Google Scholar 

  9. Minai, A.A., Barrows, G.L., Levy, W.B.: Disambiguation of pattern sequences with recurrent networks. In: Proceedings WCNN, San Diego, vol. 4, pp. 176–180 (1994)

    Google Scholar 

  10. Samura, T., Hattori, M., Ishizaki, S.: Sequence disambiguation and pattern completion by cooperation between autoassociative and heteroassociative memories of functionally divided hippocampal CA3. Neurocomputing 71(16–18), 3176–3183 (2008)

    Article  Google Scholar 

  11. Sohal, V.S., Hasselmo, M.E.: Gabab modulation improves sequence disambiguation in computational models of hippocampal region CA3. Hippocampus 8(2), 171–193 (1998)

    Article  Google Scholar 

  12. Deco, G., Rolls, E.T.: Sequential memory: a putative neural and synaptic dynamical mechanism. J. Cogn. Neurosci. 17(2), 294–307 (2005)

    Article  Google Scholar 

  13. Veliz-Cuba, A., Shouval, H.Z., Josić, K., Kilpatrick, Z.P.: Networks that learn the precise timing of event sequences. J. Comput. Neurosci. 39(3), 235–254 (2015)

    Article  MathSciNet  Google Scholar 

  14. Amari, S.I.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  MathSciNet  Google Scholar 

  15. Sandamirskaya, Y., Schöner, G.: An embodied account of serial order: how instabilities drive sequence generation. Neural Netw. 23(10), 1164–1179 (2010)

    Article  Google Scholar 

  16. Bhalla, U.S.: Dendrites, deep learning, and sequences in the hippocampus. Hippocampus 29(3), 239–251 (2019)

    Article  Google Scholar 

  17. Branco, T., Clark, B.A., Häusser, M.: Dendritic discrimination of temporal input sequences in cortical neurons. Science 329(5999), 1671–1675 (2010)

    Article  Google Scholar 

  18. Fukushima, K.: A model of associative memory in the brain. Kybernetik 12(2), 58–63 (1973)

    Article  Google Scholar 

  19. Guyon, I., Personnaz, L., Nadal, J., Dreyfus, G.: Storage and retrieval of complex sequences in neural networks. Phys. Rev. A 38(12), 6365 (1988)

    Article  MathSciNet  Google Scholar 

  20. Lansner, A., Ekeberg, Ö.: A one-layer feedback artificial neural network with a bayesian learning rule. Int. J. Neural Syst. 1(01), 77–87 (1989)

    Article  Google Scholar 

  21. Tully, P.J., Hennig, M.H., Lansner, A.: Synaptic and nonsynaptic plasticity approximating probabilistic inference. Frontiers Synaptic Neurosci. 6, 8 (2014)

    Article  Google Scholar 

  22. Douglas, R.J., Martin, K.A., Whitteridge, D.: A canonical microcircuit for neocortex. Neural Comput. 1(4), 480–488 (1989)

    Article  Google Scholar 

  23. Douglas, R.J., Martin, K.A.: Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004)

    Article  Google Scholar 

  24. Lundqvist, M., Herman, P., Lansner, A.: Functional Brain Mapping and the Endeavor to Understand the Working Brain. IntechOpen (2013)

    Google Scholar 

  25. Lansner, A., Marklund, P., Sikström, S., Nilsson, L.G.: Reactivation in working memory: an attractor network model of free recall. PLoS ONE 8(8), e73776 (2013)

    Article  Google Scholar 

  26. Martinez, R.H., Herman, P., Lansner, A.: Probabilistic associative learning suffices for learning the temporal structure of multiple sequences. BioRxiv, p. 545871 (2019)

    Google Scholar 

  27. Tully, P., Lindén, H., Hennig, M., Lansner, A.: Spike-based bayesian-hebbian learning of temporal sequences. PLoS Comput. Biol. 12(5), e1004954 (2016)

    Article  Google Scholar 

  28. Self, M.W., Kooijmans, R.N., Supèr, H., Lamme, V.A., Roelfsema, P.R.: Different glutamate receptors convey feedforward and recurrent processing in macaque V1. Proc. Natl. Acad. Sci. 109(27), 11031–11036 (2012)

    Article  Google Scholar 

  29. Jensen, O., Lisman, J.E.: Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. Learn. Mem. 3(2–3), 264–278 (1996)

    Article  Google Scholar 

  30. Wang, H., Stradtman, G.G., Wang, X.J., Gao, W.J.: A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proc. Natl. Acad. Sci. 105(43), 16791–16796 (2008)

    Article  Google Scholar 

  31. Holthoff, K., Zecevic, D., Konnerth, A.: Rapid time course of action potentials in spines and remote dendrites of mouse visual cortex neurons. J. Physiol. 588(7), 1085–1096 (2010)

    Article  Google Scholar 

  32. Zenke, F., Gerstner, W.: Hebbian plasticity requires compensatory processes on multiple timescales. Philos. Trans. Roy. Soc. B Biol. Sci. 372(1715), 20160259 (2017)

    Article  Google Scholar 

  33. Fiete, I.R., Senn, W., Wang, C.Z., Hahnloser, R.H.: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity. Neuron 65(4), 563–576 (2010)

    Article  Google Scholar 

  34. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  35. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  37. Hasson, U., Yang, E., Vallines, I., Heeger, D.J., Rubin, N.: A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28(10), 2539–2550 (2008)

    Article  Google Scholar 

  38. Himberger, K.D., Chien, H.Y., Honey, C.J.: Principles of temporal processing across the cortical hierarchy. Neuroscience 389, 161–174 (2018)

    Article  Google Scholar 

  39. Lansner, A., Benjaminsson, S., Johansson, C.: From ANN to biomimetic information processing. In: Gutiérrez, A., Marco, S. (eds.) Biologically Inspired Signal Processing for Chemical Sensing, pp. 33–43. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00176-5_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon H. Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez, R.H., Kviman, O., Lansner, A., Herman, P. (2019). Sequence Disambiguation with Synaptic Traces in Associative Neural Networks. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30487-4_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30486-7

  • Online ISBN: 978-3-030-30487-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics