Skip to main content

Timage – A Robust Time Series Classification Pipeline

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series (ICANN 2019)

Abstract

Time series are series of values ordered by time. This kind of data can be found in many real world settings. Classifying time series is a difficult task and an active area of research. This paper investigates the use of transfer learning in Deep Neural Networks and a 2D representation of time series known as Recurrence Plots. In order to utilize the research done in the area of image classification, where Deep Neural Networks have achieved very good results, we use a Residual Neural Networks architecture known as ResNet. As preprocessing of time series is a major part of every time series classification pipeline, the method proposed simplifies this step and requires only few parameters. For the first time we propose a method for multi time series classification: Training a single network to classify all datasets in the archive with one network. We are among the first to evaluate the method on the latest 2018 release of the UCR archive, a well established time series classification benchmarking dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.docker.com/.

  2. 2.

    https://github.com/flyyufelix/cnn_finetune/blob/master/resnet_152.py.

  3. 3.

    https://gist.github.com/previtus/c1a8604a4a07de680d5fb05cebfdf893.

  4. 4.

    http://image-net.org/.

  5. 5.

    https://keras.io/applications/#resnet50.

  6. 6.

    https://www.mathworks.com/help/deeplearning/ref/resnet50.html.

  7. 7.

    https://pytorch.org/docs/0.4.0/_modules/torchvision/models/resnet.html.

  8. 8.

    https://www.cs.ucr.edu/~eamonn/time_series_data_2018.

  9. 9.

    Online results at https://github.com/patientzero/timage-icann2019.

  10. 10.

    http://www.recurrence-plot.tk/.

References

  1. Abadi, M., Agarwal, A., Barham, P.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Alessio, S.M.: Digital Signal Processing and Spectral Analysis for Scientists. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25468-5

    Book  MATH  Google Scholar 

  3. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 31(3), 606–660 (2017). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  4. Boddapati, V., Petef, A., Rasmusson, J., Lundberg, L.: Classifying environmental sounds using image recognition networks. Procedia Comput. Sci. 112, 2048–2056 (2017). https://doi.org/10.1016/j.procs.2017.08.250

    Article  Google Scholar 

  5. Chollet, F., et al.: Keras (2015). https://keras.io

  6. Dau, H.A., et al.: The UCR time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  8. Hatami, N., Gavet, Y., Debayle, J.: Classification of time-series images using deep convolutional neural networks. In: Proceedings of SPIE 2018 (2017). https://doi.org/10.1117/12.2309486

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR (2015). https://doi.org/10.1109/CVPR.2016.90

  10. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for time series classification: a review (2018). https://doi.org/10.1007/s10618-019-00619-1, https://arxiv.org/abs/1809.04356

    Article  MathSciNet  Google Scholar 

  11. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Transfer learning for time series classification. In: IEEE International Conference on Big Data, pp. 1367–1376 (2018). https://doi.org/10.1109/BigData.2018.8621990

  12. Karim, F., Majumdar, S., Darabi, H.: Insights into LSTM fully convolutional networks for time series classification (2019). https://doi.org/10.1109/ACCESS.2019.2916828, https://arxiv.org/abs/1902.10756

    Article  Google Scholar 

  13. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time series classification. IEEE Access PP (2017). https://doi.org/10.1109/ACCESS.2017.2779939

    Article  Google Scholar 

  14. Marwan, N., Carmenromano, M., Thiel, M., Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007). https://doi.org/10.1016/j.physrep.2006.11.001

    Article  MathSciNet  Google Scholar 

  15. Michael, T., Spiegel, S., Albayrak, S.: Time series classification using compressed recurrence plots, September 2015

    Google Scholar 

  16. Park, T., Lee, T.: Musical instrument sound classification with deep convolutional neural network using feature fusion approach. CoRR abs/1512.07370 (2015). https://arxiv.org/abs/1512.07370v1

  17. Schäfer, P.: The boss is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 29(6), 1505–1530 (2015). https://doi.org/10.1007/s10618-014-0377-7

    Article  MathSciNet  MATH  Google Scholar 

  18. Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL. CoRR abs/1701.07681 (2017). https://doi.org/10.1145/3132847.3132980, http://arxiv.org/abs/1701.07681

  19. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation. CoRR abs/1506.00327 (2015). http://arxiv.org/abs/1506.00327

Download references

Acknowledgement

This work is supported by a research grant of the Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst and further by the Bayerische Wissenschaftsforum (BayWISS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc Wenninger or Sebastian P. Bayerl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wenninger, M., Bayerl, S.P., Schmidt, J., Riedhammer, K. (2019). Timage – A Robust Time Series Classification Pipeline. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series. ICANN 2019. Lecture Notes in Computer Science(), vol 11730. Springer, Cham. https://doi.org/10.1007/978-3-030-30490-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30490-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30489-8

  • Online ISBN: 978-3-030-30490-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics