Skip to main content

Optoelectronic Reservoir Computing Using a Mixed Digital-Analog Hardware Implementation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions (ICANN 2019)

Abstract

Optoelectronic systems have proven to be an attractive platform for the realization of hardware-based Reservoir Computing (RC). These unconventional computers can perform nonlinear prediction of chaotic timeseries and generate arbitrary input/output functions, after training. One of the main advantages of a delay-based optoelectronic reservoir is that it only requires a single nonlinear hardware node and a feedback loop. To implement the RC scheme experimentally, we use photonic and electronic components and an FPGA to drive the system. The resulting optoelectronic RC is a hybrid analog and digital system with great versatility. We show that this set-up can perform a chaotic timeseries prediction task, in which the output is computed online, with low prediction errors. Ultimately, this testbed system will allow to test several strategies to improve the prediction performance, including the addition of multiple delays and the tailoring of the input mask for noise mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007). https://doi.org/10.1016/j.neunet.2007.04.003

    Article  MATH  Google Scholar 

  2. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009). https://doi.org/10.1016/j.cosrev.2009.03.005

    Article  MATH  Google Scholar 

  3. Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013). https://doi.org/10.1038/ncomms2368

    Article  Google Scholar 

  4. Larger, L., Baylón-Fuentes, A., Martinenghi, R., Udaltsov, V.S., Chembo, Y.K., Jacquot, M.: High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7(1), 011015 (2017). https://doi.org/10.1103/PhysRevX.7.011015

    Article  Google Scholar 

  5. Larger, L., et al.: Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing. Opt. Express 20(3), 3241–3249 (2012). https://doi.org/10.1364/OE.20.003241

    Article  Google Scholar 

  6. Antonik, P., Haelterman, M., Massar, S.: Brain-inspired photonic signal processor for generating periodic patterns and emulating chaotic systems. Phys. Rev. Appl. 7(5), 054014 (2017). https://doi.org/10.1103/PhysRevApplied.7.054014

    Article  Google Scholar 

  7. Appeltant, L., et al.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011). https://doi.org/10.1038/ncomms1476

    Article  Google Scholar 

  8. Ortín, S., et al.: A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci. Rep. 5, 14945 (2015). https://doi.org/10.1038/srep14945

    Article  Google Scholar 

  9. Bueno, J., Brunner, D., Soriano, M.C., Fischer, I.: Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback. Opt. Express 25(3), 2401–2412 (2017). https://doi.org/10.1364/OE.25.002401

    Article  Google Scholar 

  10. Bueno, J., et al.: Reinforcement learning in a large-scale photonic recurrent neural network. Optica 5(6), 756–760 (2018). https://doi.org/10.1364/OPTICA.5.000756

    Article  MathSciNet  Google Scholar 

  11. Hart, J.D., Schmadel, D.C., Murphy, T.E., Roy, R.: Experiments with arbitrary networks in time-multiplexed delay systems. Chaos 27(12), 121103 (2017). https://doi.org/10.1063/1.5016047

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel C. Soriano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soriano, M.C., Massuti-Ballester, P., Yelo, J., Fischer, I. (2019). Optoelectronic Reservoir Computing Using a Mixed Digital-Analog Hardware Implementation. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. ICANN 2019. Lecture Notes in Computer Science(), vol 11731. Springer, Cham. https://doi.org/10.1007/978-3-030-30493-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30493-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30492-8

  • Online ISBN: 978-3-030-30493-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics