Abstract
In this paper, we propose a model of ESNs that eliminates critical dependence on hyper-parameters, resulting in networks that provably cannot enter a chaotic regime and, at the same time, denotes nonlinear behaviour in phase space characterised by a large memory of past inputs, comparable to the one of linear networks. Our contribution is supported by experiments corroborating our theoretical findings, showing that the proposed model displays dynamics that are rich-enough to approximate many common nonlinear systems used for benchmarking.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertschinger, N., Natschläger, T.: Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16(7), 1413–1436 (2004). https://doi.org/10.1162/089976604323057443
Bianchi, F.M., Scardapane, S., Løkse, S., Jenssen, R.: Reservoir computing approaches for representation and classification of multivariate time series. arXiv preprint arXiv:1803.07870 (2018)
Bianchi, F.M., Scardapane, S., Uncini, A., Rizzi, A., Sadeghian, A.: Prediction of telephone calls load using echo state network with exogenous variables. Neural Netw. 71, 204–213 (2015). https://doi.org/10.1016/j.neunet.2015.08.010
Ceni, A., Ashwin, P., Livi, L.: Interpreting recurrent neural networks behaviour via excitable network attractors. Cogn. Comput. (2019). https://doi.org/10.1007/s12559-019-09634-2
Dambre, J., Verstraeten, D., Schrauwen, B., Massar, S.: Information processing capacity of dynamical systems. Sci. Rep. 2 (2012). https://doi.org/10.1038/srep00514
Gallicchio, C.: Chasing the echo state property. arXiv preprint arXiv:1811.10892 (2018)
Gallicchio, C., Micheli, A., Pedrelli, L.: Comparison between DeepESNs and gated RNNs on multivariate time-series prediction. arXiv preprint arXiv:1812.11527 (2018)
Ganguli, S., Huh, D., Sompolinsky, H.: Memory traces in dynamical systems. Proc. Nat. Acad. Sci. 105(48), 18970–18975 (2008). https://doi.org/10.1073/pnas.0804451105
Goudarzi, A., Marzen, S., Banda, P., Feldman, G., Teuscher, C., Stefanovic, D.: Memory and information processing in recurrent neural networks. arXiv preprint arXiv:1604.06929 (2016)
Grigoryeva, L., Ortega, J.P.: Echo state networks are universal. Neural Netw. 108, 495–508 (2018). https://doi.org/10.1016/j.neunet.2018.08.025
Inubushi, M., Yoshimura, K.: Reservoir computing beyond memory-nonlinearity trade-off. Sci. Rep. 7(1), 10199 (2017). https://doi.org/10.1038/s41598-017-10257-6
Jaeger, H.: Short term memory in echo state networks, vol. 5. GMD-Forschungszentrum Informationstechnik (2002)
Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004). https://doi.org/10.1126/science.1091277
Legenstein, R., Maass, W.: Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw. 20(3), 323–334 (2007). https://doi.org/10.1016/j.neunet.2007.04.017
Livi, L., Bianchi, F.M., Alippi, C.: Determination of the edge of criticality in echo state networks through Fisher information maximization. IEEE Trans. Neural Netw. Learn. Syst. 29(3), 706–717 (2018). https://doi.org/10.1109/TNNLS.2016.2644268
Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002). https://doi.org/10.1162/089976602760407955
Manjunath, G., Jaeger, H.: Echo state property linked to an input: exploring a fundamental characteristic of recurrent neural networks. Neural Comput. 25(3), 671–696 (2013). https://doi.org/10.1162/NECO_a_00411
Marzen, S.: Difference between memory and prediction in linear recurrent networks. Phys. Rev. E 96(3), 032308 (2017). https://doi.org/10.1103/PhysRevE.96.032308
Palumbo, F., Gallicchio, C., Pucci, R., Micheli, A.: Human activity recognition using multisensor data fusion based on reservoir computing. J. Ambient Intell. Smart Environ. 8(2), 87–107 (2016)
Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120(2), 024102 (2018)
Pathak, J., Lu, Z., Hunt, B.R., Girvan, M., Ott, E.: Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos: Interdisc. J. Nonlinear Sci. 27(12), 121102 (2017). https://doi.org/10.1063/1.5010300
Pathak, J., et al.: Hybrid forecasting of chaotic processes: using machine learning in conjunction with a knowledge-based model. Chaos: Interdisc. J. Nonlinear Sci. 28(4), 041101 (2018). https://doi.org/10.1063/1.5028373
Rajan, K., Abbott, L.F., Sompolinsky, H.: Stimulus-dependent suppression of chaos in recurrent neural networks. Phys. Rev. E 82(1), 011903 (2010). https://doi.org/10.1103/PhysRevE.82.011903
Rivkind, A., Barak, O.: Local dynamics in trained recurrent neural networks. Phys. Rev. Lett. 118, 258101 (2017). https://doi.org/10.1103/PhysRevLett.118.258101
Sompolinsky, H., Crisanti, A., Sommers, H.J.: Chaos in random neural networks. Phys. Rev. Lett. 61(3), 259 (1988). https://doi.org/10.1103/PhysRevLett.61.259
Sussillo, D., Barak, O.: Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25(3), 626–649 (2013). https://doi.org/10.1162/NECO_a_00409
Tiňo, P., Rodan, A.: Short term memory in input-driven linear dynamical systems. Neurocomputing 112, 58–63 (2013). https://doi.org/10.1016/j.neucom.2012.12.041
Verstraeten, D., Dambre, J., Dutoit, X., Schrauwen, B.: Memory versus non-linearity in reservoirs. In: IEEE International Joint Conference on Neural Networks, pp. 1–8. IEEE, Barcelona (2010)
Verzelli, P., Alippi, C., Livi, L.: Echo state networks with self-normalizing activations on the hyper-sphere. arXiv preprint arXiv:1903.11691 (2019)
Verzelli, P., Livi, L., Alippi, C.: A characterization of the edge of criticality in binary echo state networks. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2018). https://doi.org/10.1109/MLSP.2018.8516959
Wainrib, G., Galtier, M.N.: A local echo state property through the largest Lyapunov exponent. Neural Netw. 76, 39–45 (2016). https://doi.org/10.1016/j.neunet.2015.12.013
Yildiz, I.B., Jaeger, H., Kiebel, S.J.: Re-visiting the echo state property. Neural Netw. 35, 1–9 (2012). https://doi.org/10.1016/j.neunet.2012.07.005
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Verzelli, P., Alippi, C., Livi, L. (2019). Hyper-spherical Reservoirs for Echo State Networks. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Workshop and Special Sessions. ICANN 2019. Lecture Notes in Computer Science(), vol 11731. Springer, Cham. https://doi.org/10.1007/978-3-030-30493-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-30493-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30492-8
Online ISBN: 978-3-030-30493-5
eBook Packages: Computer ScienceComputer Science (R0)