Skip to main content

Neural Network 3D Body Pose Tracking and Prediction for Motion-to-Photon Latency Compensation in Distributed Virtual Reality

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

Abstract

Distributed Virtual Reality (DVR) systems enable geographically dispersed users to interact in a shared virtual environment. The realism of the interaction is crucial to increase the feeling of co-presence. Latency, produced either by hard- or software components of DVR applications, impedes reaching high realism levels of the DVR experience. For example, the time delay between the user’s motion and the corresponding display rendering of the DVR system might lead to adverse effects such as a reduced sense of presence or motion sickness. One way of minimizing the latency is to predict user’s motion and thus compensate for the inherent latency in the system. In order to address this problem, we propose a neural network 3D pose tracking and prediction system with latency guarantees for end-to-end avatar reconstruction. We evaluate and compare our system against multiple traditional methods and provide a thorough analysis on real-world human motion data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An overview on the VIRTOOAIR framework is available at: https://audi-konfuzius-institut-ingolstadt.de/category/akii-microlab/current-projects.

  2. 2.

    Source code available at: https://gitlab.com/akii-microlab/virtooair.

References

  1. Openvr sdk (2015). https://github.com/ValveSoftware/openvr

  2. Vive vr system (2018). https://www.vive.com/us/product/vive-virtual-reality-system/

  3. Allen, B., Curless, B., Popović, Z., Hertzmann, A.: Learning a correlated model of identity and pose-dependent body shape variation for real-time synthesis. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2006, pp. 147–156. Eurographics Association, Aire-la-Ville (2006). http://dl.acm.org/citation.cfm?id=1218064.1218084

  4. Becher, A., Angerer, J., Grauschopf, T.: Novel approach to measure motion-to-photon and mouth-to-ear latency in distributed virtual reality systems. In: GI VR/AR WORKSHOP 2018 (2018)

    Google Scholar 

  5. Becher A., Axenie C., Grauschopf, T.: VIRTOOAIR: virtual reality toolbox for avatar intelligent reconstruction. In: Multimodal Virtual and Augmented Reality Workshop (MVAR) at 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (2018)

    Google Scholar 

  6. Choi, S.W., Lee, S., Seo, M.W., Kang, S.J.: Time sequential motion-to-photon latency measurement system for virtual reality head-mounted displays. Electronics 7(9), 171 (2018)

    Article  Google Scholar 

  7. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  8. Collet, A., et al.: High-quality streamable free-viewpoint video. ACM Trans. Graph. 34(4), 69:1–69:13 (2015). https://doi.org/10.1145/2766945

    Article  Google Scholar 

  9. Daanen, H., Ter Haar, F.: Review. Displays 34(4), 270–275 (2013)

    Article  Google Scholar 

  10. Du, X., Vasudevan, R., Johnson-Roberson, M.: Bio-LSTM: a biomechanically inspired recurrent neural network for 3-d pedestrian pose and gait prediction. IEEE Robot. Autom. Lett. 4(2), 1501–1508 (2019)

    Article  Google Scholar 

  11. Elbamby, M.S., Perfecto, C., Bennis, M., Doppler, K.: Toward low-latency and ultra-reliable virtual reality. IEEE Netw. 32(2), 78–84 (2018)

    Article  Google Scholar 

  12. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)

    Article  Google Scholar 

  13. Jain, A., Thormählen, T., Seidel, H.P., Theobalt, C.: Moviereshape: tracking and reshaping of humans in videos. In: ACM SIGGRAPH Asia 2010 Papers, SIGGRAPH ASIA 2010, pp. 148:1–148:10. ACM, New York (2010). https://doi.org/10.1145/1866158.1866174

  14. Jerald, J., Whitton, M., Brooks Jr., F.P.: Scene-motion thresholds during head yaw for immersive virtual environments. ACM Trans. Appl. Percept. 9(1), 4:1–4:23 (2012)

    Article  Google Scholar 

  15. Lee, K., Lee, I., Lee, S.: Propagating LSTM: 3D pose estimation based on joint interdependency. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 123–141. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_8

    Chapter  Google Scholar 

  16. Lin, M., Lin, L., Liang, X., Wang, K., Cheng, H.: Recurrent 3D pose sequence machines. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  17. Malleson, C., et al.: Rapid one-shot acquisition of dynamic VR avatars. In: 2017 IEEE Virtual Reality (VR), pp. 131–140 (2017)

    Google Scholar 

  18. Martinez, J., Black, M.J., Romero, J.: On human motion prediction using recurrent neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4674–4683 (2017)

    Google Scholar 

  19. Meehan, M., Razzaque, S., Whitton, M.C., Brooks, F.P.: Effect of latency on presence in stressful virtual environments. In: IEEE Virtual Reality 2003, pp. 141–148, 22–26 March 2003

    Google Scholar 

  20. Munafo, J., Diedrick, M., Stoffregen, T.A.: The virtual reality head-mounted display oculus rift induces motion sickness and is sexist in its effects. Exp. Brain Res. 235(3), 889–901 (2017)

    Article  Google Scholar 

  21. Niehorster, D.C., Li, L., Lappe, M.: The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception (2017)

    Google Scholar 

  22. Shih, S., Shih, W.: Application of ridge regression analysis to water resources studies. J. Hydrol. 40(1), 165–174 (1979)

    Article  Google Scholar 

  23. St. Pierre, M.E., Banerjee, S., Hoover, A.W., Muth, E.R.: The effects of 0.2hz varying latency with 20–100ms varying amplitude on simulator sickness in a helmet mounted display. Displays 36, 1–8 (2015)

    Article  Google Scholar 

  24. Tang, Y., Ma, L., Liu, W., Zheng, W.S.: Long-term human motion prediction by modeling motion context and enhancing motion dynamics. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (2018). https://doi.org/10.24963/ijcai.2018/130

  25. Zhou, S., Fu, H., Liu, L., Cohen-Or, D., Han, X.: Parametric reshaping of human bodies in images. ACM Trans. Graph. 29(4), 126:1–126:10 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Axenie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pohl, S., Becher, A., Grauschopf, T., Axenie, C. (2019). Neural Network 3D Body Pose Tracking and Prediction for Motion-to-Photon Latency Compensation in Distributed Virtual Reality. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics