Skip to main content

Aggregating Rich Deep Semantic Features for Fine-Grained Place Classification

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

  • 2669 Accesses

Abstract

This paper proposes a method that aggregates rich deep semantic features for fine-grained place classification. As is known to all, the category of images depends on the objects and text as well as the various semantic regions, hierarchical structure, and spatial layout. However, most recently designed fine-grained classification systems ignored this, the complex multi-level semantic structure of images associated with fine-grained classes has not yet been well explored. Therefore, in this work, our approach composed of two modules: Content Estimator (CNE) and Context Estimator (CXE). CNE generates deep content features by encoding global visual cues of images. CXE obtains rich context features of images, and it consists of three children Estimator: Text Context Estimator (TCE), Object Context Estimator (OCE), and Scene Context Estimator (SCE). When inputting an image into CXE, TCE encodes text cues to identify word-level semantic information, OCE extracts high-dimensional feature then maps it to object semantic information, SCE gains hierarchical structure and spatial layout information by recognizing scene cues. To aggregate rich deep semantic features, we fuse the information about CNE and CXE for fine-grained classification. To the best of our knowledge, this is the first work to leverage the text information from an arbitrary-oriented scene text detector for extracting context information. Moreover, our method explores the fusion of semantic features and demonstrates scene features to give more complementary information with the other cues. Furthermore, the proposed approach achieves state-of-the-art performance on a fine-grained classification dataset, 84.3% on Con-Text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2911–2918 (2012). https://doi.org/10.1109/cvpr.2012.6248018

  2. Bai, X., Yang, M., Lyu, P., Xu, Y., Luo, J.: Integrating scene text and visual appearance for fine-grained image classification. IEEE Access 6, 66322–66335 (2018). https://doi.org/10.1109/access.2018.2878899

    Article  Google Scholar 

  3. Branson, S., Van Horn, G., Belongie, S., Perona, P.: Bird species categorization using pose normalized deep convolutional nets. arXiv preprint arXiv:1406.2952 (2014)

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011). https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  5. Gavves, E., Fernando, B., Snoek, C.G., Smeulders, A.W., Tuytelaars, T.: Fine-grained categorization by alignments. In: International Conference on Computer Vision (ICCV), pp. 1713–1720 (2013). https://doi.org/10.1109/iccv.2013.215

  6. Gavves, E., Fernando, B., Snoek, C.G., Smeulders, A.W., Tuytelaars, T.: Local alignments for fine-grained categorization. Int. J. Comput. Vis. 111, 191–212 (2015). https://doi.org/10.1007/s11263-014-0741-5

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.1109/cvpr.2016.90

  8. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. arXiv Preprint arXiv:1406.2227 (2014)

  9. Karaoglu, S., van Gemert, J.C., Gevers, T.: Con-text: text detection using background connectivity for fine-grained object classification. In: ACM International Conference on Multimedia (MM), pp. 757–760 (2013). https://doi.org/10.1145/2502081.2502197

  10. Karaoglu, S., Tao, R., van Gemert, J.C., Gevers, T.: Con-text: text detection for fine-grained object classification. IEEE Trans. Image Process. 26, 3965–3980 (2017). https://doi.org/10.1109/tip.2017.2707805

    Article  MathSciNet  MATH  Google Scholar 

  11. Karaoglu, S., Tao, R., Gevers, T., Smeulders, A.W.: Words matter: scene text for image classification and retrieval. IEEE Trans. Multimedia 19, 1063–1076 (2017). https://doi.org/10.1109/tmm.2016.2638622

    Article  Google Scholar 

  12. Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 1156–1160 (2015). https://doi.org/10.1109/icdar.2015.7333942

  13. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2169–2178 (2006). https://doi.org/10.1109/cvpr.2006.68

  14. Liao, M., Shi, B., Bai, X., Wang, X., Liu, W.: TextBoxes: a fast text detector with a single deep neural network. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 4161–4167 (2017)

    Google Scholar 

  15. Liu, J., Kanazawa, A., Jacobs, D., Belhumeur, P.: Dog breed classification using part localization. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 172–185. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_13

    Chapter  Google Scholar 

  16. Ma, J., et al.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimedia 20, 3111–3122 (2018). https://doi.org/10.1109/tmm.2018.2818020

    Article  Google Scholar 

  17. Movshovitz-Attias, Y., Yu, Q., Stumpe, M.C., Shet, V., Arnoud, S., Yatziv, L.: Ontological supervision for fine grained classification of street view storefronts. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1693–1702 (2015). https://doi.org/10.1109/cvpr.2015.7298778

  18. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP), pp. 722–729 (2008). https://doi.org/10.1109/icvgip.2008.47

  19. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42, 145–175 (2001)

    Article  Google Scholar 

  20. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 413–420 (2009). https://doi.org/10.1109/cvprw.2009.5206537

  21. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556 (2014)

  23. Tian, Z., Huang, W., He, T., He, P., Qiao, Y.: Detecting text in natural image with connectionist text proposal network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 56–72. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_4

    Chapter  Google Scholar 

  24. Torresani, L., Szummer, M., Fitzgibbon, A.: Efficient object category recognition using classemes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 776–789. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_56

    Chapter  Google Scholar 

  25. Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retrieval. Int. J. Comput. Vision 72(2), 133–157 (2007). https://doi.org/10.1007/s11263-006-8614-1

    Article  Google Scholar 

  26. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3485–3492 (2010). https://doi.org/10.1109/cvpr.2010.5539970

  27. Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 842–850 (2015). https://doi.org/10.1109/cvpr.2015.7298685

  28. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_54

    Chapter  Google Scholar 

  29. Zheng, Y., Jiang, Y.-G., Xue, X.: Learning hybrid part filters for scene recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 172–185. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_13

    Chapter  Google Scholar 

  30. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40, 1452–1464 (2017). https://doi.org/10.1109/tpami.2017.2723009

    Article  Google Scholar 

  31. Zhou, X., et al.: East: an efficient and accurate scene text detector. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2642–2651 (2017). https://doi.org/10.1109/cvpr.2017.283

Download references

Acknowledgement

This research is funded by the Science and Technology Commission of Shanghai Municipality (No. 18511103105) and by Xiaoi Research. The computation is performed in ECNU Public Platform for Innovation (001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxin Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, T. et al. (2019). Aggregating Rich Deep Semantic Features for Fine-Grained Place Classification. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics