Skip to main content

Fast White-Box Implementations of Dedicated Ciphers on the ARMv8 Architecture

  • Conference paper
  • First Online:
Progress in Cryptology – LATINCRYPT 2019 (LATINCRYPT 2019)

Abstract

Dedicated white-box ciphers concern the design of algorithms that withstand secret (key) extraction while executing in an insecure, fully explorable environment. This work presents strategies to efficiently implement on software three families of dedicated white-box ciphers targeted towards the ARMv8 architecture with NEON vector instructions. We report results of our white box implementations for the dedicated ciphers SPACE, WEM and SPNBox on four different ARMv8 CPU cores. In most cases, our optimized implementations improve the performance when compared with the best known implementations. For the cipher SPNbox-16 we propose a faster method for its matrix multiplication layer and discuss the impact on performance.

This research was supported by Samsung Eletrônica da Amazônia Ltda., via project “White-Box Cryptography”, within the scope of the Informatics Law No. 8248/91.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/arch/arm64/crypto/aes-neon.S.

  2. 2.

    See: https://android.googlesource.com/platform/ndk/+/refs/heads/ndk-r13-release/CHANGELOG.md.

References

  1. Alpirez Bock, E., Bos, J.W., Brzuska, C., et al.: White-box cryptography: don’t forget about grey-box attacks. J. Cryptol. 1–49 (2019). https://doi.org/10.1007/s00145-019-09315-1

  2. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_19

    Chapter  Google Scholar 

  3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES implementation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_16

    Chapter  Google Scholar 

  4. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on the ASASA structure: black-box, white-box, and public-key (extended abstract). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_4

    Chapter  Google Scholar 

  5. Biryukov, A., Khovratovich, D.: Decomposition attack on SASASASAS. Cryptology ePrint Archive, Report 2015/646 (2015). https://eprint.iacr.org/2015/646

  6. Bock, E.A., Amadori, A., Bos, J.W., Brzuska, C., Michiels, W.: Doubly half-injective PRGs for incompressible white-box cryptography. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 189–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_10

    Chapter  Google Scholar 

  7. Bogdanov, A., Isobe, T.: White-box cryptography revisited: space-hard ciphers. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS 2015, pp. 1058–1069. ACM, New York (2015)

    Google Scholar 

  8. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptography: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_5

    Chapter  Google Scholar 

  9. Cho, J., et al.: WEM: a new family of white-box block ciphers based on the even-mansour construction. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 293–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_17

    Chapter  Google Scholar 

  10. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_17

    Chapter  MATH  Google Scholar 

  11. Cioschi, F., Fornari, N., Visconti, A.: White-box cryptography: a time-security trade-off for the SPNbox family. In: Woungang, I., Dhurandher, S.K. (eds.) WIDECOM 2018. LNDECT, vol. 27, pp. 153–166. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11437-4_12

    Chapter  Google Scholar 

  12. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the even-mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_21

    Chapter  MATH  Google Scholar 

  13. Fouque, P.-A., Karpman, P., Kirchner, P., Minaud, B.: Efficient and provable white-box primitives. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 159–188. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_6

    Chapter  Google Scholar 

  14. Gouvêa, C.P.L., López, J.: Implementing GCM on ARMv8. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 167–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_9

    Chapter  Google Scholar 

  15. Junod, P., Vaudenay, S.: Perfect diffusion primitives for block ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 84–99. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4_6

    Chapter  Google Scholar 

  16. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol. II, 3rd edn. Addison-Wesley, Boston (1998)

    MATH  Google Scholar 

  17. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_18

    Chapter  MATH  Google Scholar 

  18. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_14

    Chapter  Google Scholar 

  19. Saxena, A., Wyseur, B., Preneel, B.: Towards security notions for white-box cryptography. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 49–58. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04474-8_4

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félix Carvalho Rodrigues .

Editor information

Editors and Affiliations

Appendix A: Comparison of clang and gcc Compilers

Appendix A: Comparison of clang and gcc Compilers

In this Appendix we present our complete performance measurements, shown in Table 3.

Table 3. Measured performance of dedicated ciphers in CTR mode of operation for messages of 2048 bytes, using both gcc and clang compilers. Grey cells indicate a speedup of over ten percent between compilers.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodrigues, F.C., Fujii, H., Zoppi Serpa, A.C., Sider, G., Dahab, R., López, J. (2019). Fast White-Box Implementations of Dedicated Ciphers on the ARMv8 Architecture. In: Schwabe, P., Thériault, N. (eds) Progress in Cryptology – LATINCRYPT 2019. LATINCRYPT 2019. Lecture Notes in Computer Science(), vol 11774. Springer, Cham. https://doi.org/10.1007/978-3-030-30530-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30530-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30529-1

  • Online ISBN: 978-3-030-30530-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics