Abstract
In this paper, we propose a new protocol for secure multiparty learning (SML) from the aggregation of locally trained models, by using homomorphic proxy re-encryption and aggregate signature techniques. In our scheme, we utilize the method of secure verifiable computation delegation to privately generate labels for auxiliary unlabeled public data. Based on the labeled dataset, a central entity can learn a global learning model without direct access to the local private datasets. The generalization performance of SML is excellent and almost equals to the accuracy of the model learned from the union of all the parties’ datasets. We implement SML on MNIST, and extensive analysis shows that our method is effective, efficient and secure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33(8), 831 (2015)
Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2018)
Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-based computation. In: Proceedings of the 8th Workshop on Multimedia and Security, pp. 146–151. ACM (2006)
Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122
Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_26
Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12(Mar), 1069–1109 (2011)
Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396 (2014)
Chen, X., Li, J., Weng, J., Ma, J., Lou, W.: Verifiable computation over large database with incremental updates. IEEE Trans. Comput. 65(10), 3184–3195 (2016)
Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression and classification. In: Proceedings of the Fourth SIAM International Conference on Data Mining, pp. 222–233 (2004)
Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333. ACM (2015)
Graves, A., Mohamed, A.R., Hinton, G.E.: Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649 (2013)
Hamm, J., Cao, Y., Belkin, M.: Learning privately from multiparty data. In: Proceedings of the 33nd International Conference on Machine Learning, pp. 555–563 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)
Ma, X., Chen, X., Zhang, X.: Non-interactive privacy-preserving neural network prediction. Inf. Sci. 481, 507–519 (2019)
Ma, X., Zhang, F., Chen, X., Shen, J.: Privacy preserving multi-party computation delegation for deep learning in cloud computing. Inf. Sci. 459, 103–116 (2018)
Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: Proceedings of the 2017 38th IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE (2017)
Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I., Talwar, K.: Semi-supervised knowledge transfer for deep learning from private training data. arXiv preprint arXiv:1610.05755 (2016)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 91–99 (2015)
Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)
Slavkovic, A.B., Nardi, Y., Tibbits, M.M.: Secure logistic regression of horizontally and vertically partitioned distributed databases. In: Workshops Proceedings of the 7th IEEE International Conference on Data Mining, pp. 723–728 (2007)
Zhang, X., Chen, X., Wang, J., Zhan, Z., Li, J.: Verifiable privacy-preserving single-layer perceptron training scheme in cloud computing. Soft. Comput. 22(23), 7719–7732 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Ma, X., Ji, C., Zhang, X., Wang, J., Li, J., Li, KC. (2019). Secure Multiparty Learning from Aggregation of Locally Trained Models. In: Chen, X., Huang, X., Zhang, J. (eds) Machine Learning for Cyber Security. ML4CS 2019. Lecture Notes in Computer Science(), vol 11806. Springer, Cham. https://doi.org/10.1007/978-3-030-30619-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-30619-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30618-2
Online ISBN: 978-3-030-30619-9
eBook Packages: Computer ScienceComputer Science (R0)