Abstract
Network embedding is a useful tool to map graph structures into vector spaces, which facilitates graph analysis tasks including node classification, graph visualization, similarity calculation etc. Existing network embedding methods calculate embedding vectors based on node series generated by random walks. These methods treat all the links equally during the random walk procedure, which leads to the missing of structural information that is key to the embedding performance. We therefore propose in this paper a novel random walk-based network embedding method called Self-Adjusting Random Walk (SARW). SARW utilizes a self-adjusting strategy that makes the walking biased towards the links that are more strongly connected in order to better capture the structural information. Further more, the strengths of links are updated using the embedding output as feedback. Through experiments we have verified that our method out performs state-of-the-art network embedding methods, in node classification tasks and link prediction tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)
Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 385–394. ACM (2017)
Cavallari, S., Zheng, V.W., Cai, H., Chang, K.C.C., Cambria, E.: Learning community embedding with community detection and node embedding on graphs. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 377–386. ACM (2017)
Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: hierarchical representation learning for networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)
Šubelj, L., Bajec, M.: Model of complex networks based on citation dynamics. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 527–530. ACM (2013)
McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)
Acknowledgement
This research was supported by Nature Science Foundation of China (Grant No. 61672284), Natural Science Foundation of Jiangsu Province (Grant No. BK20171418), China Postdoctoral Science Foundation (Grant No. 2016M591841), Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1601225C)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, C., Guan, D., Yuan, W. (2019). Network Embedding via Link Strength Adjusted Random Walk. In: Ohara, K., Bai, Q. (eds) Knowledge Management and Acquisition for Intelligent Systems. PKAW 2019. Lecture Notes in Computer Science(), vol 11669. Springer, Cham. https://doi.org/10.1007/978-3-030-30639-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-30639-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30638-0
Online ISBN: 978-3-030-30639-7
eBook Packages: Computer ScienceComputer Science (R0)