Skip to main content

Deriving Distributed Design Models from Global State Machines Requirements

  • Conference paper
  • First Online:
System Analysis and Modeling. Languages, Methods, and Tools for Industry 4.0 (SAM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11753))

Included in the following conference series:

  • 663 Accesses

Abstract

This paper deals with deriving a distributed design model from a global requirements model written in the notation of Hierarchical State Machines (HSMs). In this paper, we extend the UML notation of HSMs to describe the roles (components) that participate in the actions of each state of the global behaviour. A simple state represents some local actions, while a hierarchical state usually represents a collaboration between several roles (system components). Our global HSM requirements model describes the sequencing of collaborations and local actions. We compare this notation with other notations such as UML Collaborations, Hierarchical Message Sequence Charts (HMSC), Activity Diagrams, Partial-Order(PO)-Charts and others. Then we explain how a distributed design model, including all required coordination messages between the different system components, can be automatically derived from a global requirements model. We consider the following sequencing constraints between different collaborations: weak or strict sequence, alternatives, weak or strict while loop, and concurrency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alur, R., Yannakakis, M.: Model checking of message sequence charts. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 114–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9_10

    Chapter  Google Scholar 

  2. Castejón, H.N., von Bochmann, G., Bræk, R.: On the realizability of collaborative services. Softw. Syst. Model. 12(3), 597–617 (2013)

    Article  Google Scholar 

  3. von Bochmann, G.: Conformance testing with respect to partial-order specifications. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS 2016. LNCS, vol. 9976, pp. 3–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47443-4_1

    Chapter  Google Scholar 

  4. Object Managment Group: UML 2.5.1 Specification. Technical report (2017)

    Google Scholar 

  5. Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Program. 15(1), 33–71 (1986)

    Article  MathSciNet  Google Scholar 

  6. Gischer, J.L.: The equational theory of pomsets. Theoret. Comput. Sci. 61(2–3), 199–224 (1988)

    Article  MathSciNet  Google Scholar 

  7. Mauw, S., Reniers, M.A.: High-level message sequence charts. In: SDL 1997: Time for Testing, pp. 291–306. Elsevier (1997)

    Google Scholar 

  8. Bochmann, G.V.: Deriving component designs from global requirements. In: CEUR Workshop Proceedings, vol. 503, pp. 55–69 (2008)

    Google Scholar 

  9. Khendek, F., von Bochmann, G., Kant, C.: New results on deriving protocol specifications from service specifications. In: Proceedings of the ACM SIGCOMM 1989, pp. 136–145 (1989)

    Article  Google Scholar 

  10. Gotzhein, R., von Bochmann, G.: Deriving protocol specifications from service specifications including parameters. ACM Trans. Comput. Syst. 8(4), 255–283 (1990)

    Article  Google Scholar 

  11. Al-hammouri, M.F., Bochmann, G.: Realizability of service specifications. In: Khendek, F., Gotzhein, R. (eds.) SAM 2018. LNCS, vol. 11150, pp. 127–143. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01042-3_8

    Chapter  Google Scholar 

  12. Barros, A., Dumas, M., Oaks, P.: Standards for web service choreography and orchestration: status and perspectives. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 61–74. Springer, Heidelberg (2006). https://doi.org/10.1007/11678564_7

    Chapter  Google Scholar 

  13. Badreddin, O., Lethbridge, T.C., Forward, A., Elaasar, M., Aljamaan, H., Garzon, M.A.: Enhanced code generation from UML composite state machines. In: 2014 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 235–245. IEEE (2014)

    Google Scholar 

  14. Wikipedia contributors: structured programming, the free encyclopedia (2019). https://en.wikipedia.org/wiki/Structured_programming. Accessed 4 July 2019

  15. Bochmann, G.: Associativity between weak and strict sequencing. In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.) SAM 2014. LNCS, vol. 8769, pp. 96–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11743-0_7

    Chapter  Google Scholar 

  16. Toqeer, I.: Modeling and performance analysis of distributed systems with collaboration behaviour diagrams. Ph.D. thesis, University of Ottawa (2014). http://hdl.handle.net/10393/30950

  17. Mooij, A., Romijn, J., Wesselink, W.: Realizability criteria for compositional MSC. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 248–262. Springer, Heidelberg (2006). https://doi.org/10.1007/11784180_20

    Chapter  Google Scholar 

  18. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1_37

    Chapter  Google Scholar 

  19. Bochmann, G.V.: Deriving protocol specification from service specifications. In: Proceedings of the SIGCOMM 1986, pp. 144–156 (1986)

    Google Scholar 

  20. Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence and non-local choice in message sequence charts. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 259–274. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035393

    Chapter  Google Scholar 

  21. Gouda, M.G., Yu, Y.T.: Synthesis of communicating finite-state machines with guaranteed progress. IEEE Trans. Commun. 32(7), 779–788 (1984)

    Article  Google Scholar 

  22. Mustafa, N.M.F., Bochmann, G.V.: Transforming dynamic behavior specifications from activity diagrams to BPEL. In: Proceedings - 6th IEEE International Symposium on Service-Oriented System Engineering, SOSE 2011, pp. 305–311 (2011)

    Google Scholar 

  23. Umple, v 1.29.1 (2018). http://www.umple.org

  24. Zakariapour, A.: Model-driven development of distributed systems in umple. Master’s thesis, University Of Ottawa (2018). http://hdl.handle.net/10393/37143

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad F. Al-hammouri or Gregor V. Bochmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-hammouri, M.F., Bochmann, G.V. (2019). Deriving Distributed Design Models from Global State Machines Requirements. In: Fonseca i Casas, P., Sancho, MR., Sherratt, E. (eds) System Analysis and Modeling. Languages, Methods, and Tools for Industry 4.0. SAM 2019. Lecture Notes in Computer Science(), vol 11753. Springer, Cham. https://doi.org/10.1007/978-3-030-30690-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30690-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30689-2

  • Online ISBN: 978-3-030-30690-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics