
Generating Executable Code from High-level
Formal Description of Social or Socio-Ecological

Models?

Themis Dimitra Xanthopoulou1[0000−0003−2914−0472], Andreas
Prinz1[1111−2222−3333−4444], and Fount LeRon Shults2[2222−−3333−4444−5555]

1 University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway
themis.d.xanthopoulou@uia.no

https://www.uia.no/en/kk/profil/themisdx
2 University of Agder, Universitetsveien 19, 4630 Kristiansand, Norway

Abstract. Agent-Based Modelling has been used for social simulation
because of the several benefits it entails, including the capacity to im-
prove conceptual clarity, enhance scientific understanding of complex
phenomena, and contribute policy-relevant insights through simulation
experiments. Social models are often constructed by inter-disciplinary
teams that include subject-matter experts with no programming skills.
These experts are typically involved in the creation of the conceptual
model, but not the verification or validation of the simulation model. The
Overview, Design concepts, and Details (ODD) protocol has emerged as
a way of presenting a model at a high level of abstraction and as an
effort towards reproducibility of Agent Based Models (ABMs). However,
this popular protocol does not improve the involvement of experts be-
cause it is typically written after a model has been completed. This
paper reverses the process and provides non-programming experts with
a user-friendly and extensible tool called ODD2ABM for creating and
altering models on their own. This is done by formalizing ODD using
concepts abstracted from the NetLogo language, enabling users to gen-
erate NetLogo code from an ODD description automatically. We verified
the ODD2ABM tool with three existing NetLogo models and assessed it
with criteria developed by other researchers.

Keywords: Social model · Meta-model · Code generation · Abstraction
· Formality · Reproducibility · Verification .

1 Introduction

In recent years there has been a rapid rise in the use of the Agent-Based Mod-
elling [2], which typically involves micro-simulation based on individually (in-
ter)acting sub-models [29]. Distinct from the more generic Multi-Agent Models,

? Supported by the University of Agder



2 T. D. Xanthopoulou et al.

ABMs offer unique capabilities and are widely used by a growing number of sci-
entists and policy professionals [5,10,11,21]. One of the prominent applications
of ABMs is in social simulations.

ABMs contribute to conceptual clarity for the ambiguous concepts in social
science. For example, most of us immediately grasp the general meaning of the
concept of bullying, but it can be difficult to determine precisely the sort of
incident that falls into that category. Definitions of bullying that are too vague
make it difficult to identify and mitigate the relevant behaviours. The creation
of an ABM requires scientists to clarify vague concepts by explicitly linking
the concepts to agent behaviours, agent properties and interactions, which are
easier to compare to real life situations and more likely to render policy-relevant
insights.

Hassam et al. have identified four roles in the development of an ABM: the
thematician, the modeller, the computer scientist and the programmer [11]. In
the following section we will use the paradigms of the model development process
presented in [22] to explain the function of each role. A model is the represen-
tation of a real-life “problem entity”. The thematician, who is the expert in
the problem entity, is the person who creates the first conceptual model of the
problem entity by providing the context of the ABM, system theories and ex-
pert knowledge. The modeller transforms the description of the first conceptual
model into a more formal conceptual model or a simulation model specification,
the computer scientist finds an executable approximation, and the program-
mer implements the simulation model using a selected programming language
and platform. Rarely can one researcher cover all these roles. Moreover, com-
plex models usually require perspectives from different disciplines and therefore
more than one thematicians. These are the reasons why ABMs are typically
constructed by multidisciplinary teams.

These teams face several challenges. First of all, communication of the con-
ceptual model among such diverse researchers can be difficult [11, 21, 23]. Since
the product of each development step depends on the individual conceptual
understanding, even with the same thematician, different teams may come up
with dissimilar simulation models. This dissimilarity hinders reproducibility of
results, which is one of the pillars of the Scientific method. One of the ways
to ensure reproducibility is to perform verification from one step to another.
Sargent [22] specifies two types of verification: the specification verification that
takes place between the conceptual model and the simulation model specification
and the implementation verification that takes place between the conceptual
model specification and the simulation model. The complicating issue is that
subject-matter experts, who form conceptual model by abstracting their under-
standing of the real-life problem entity, are not usually skilled in modelling and
computer programming and cannot perform the verifications. They typically find
the executable code obscure [4]. The definition of the model becomes ’hidden’ in
the simulation platform and cannot be perceived, validated or changed by the
experts [4, 11]. Nevertheless, researchers urge the involvement of experts in the



Code Generation from High-Level Models 3

creation of the model to ensure the validity of the simulation model specification
and simulation model [4–6,11,21].

Consequently, we want to solve the following problem with this paper: How
can we make ABMs more accessible to subject-matter experts to ensure verifi-
cation and to enable validation of the simulation models? A possible approach
favours building blocks that could enable non-programming experts to develop
and modify their ABMs [10]. Continuing with this thought, we want to create a
domain-specific language (DSL) and an associated tool allowing subject-matter
experts to create and change the simulations models by changing their descrip-
tions of conceptual models. Keeping this perspective in mind, we focus more on
ease of use than efficiency in code generation.

This paper is structured as follows: Section 2 introduces ODD, NetLogo,
and DSL and provides an overview of related work. Section 3.1 describes the
process we followed to build each meta-model component. Section 4 presents
our results and Section 5 discusses the quality of the outcome. Finally, Section
6 summarizes the paper. Throughout the paper, we illustrate the steps of the
methodology with the Wolf Sheep Simple 5 model [25].

2 Background and Related Work

2.1 ODD

Many scholars in the Agent-Based Modelling community have adopted the Overview,
Design concepts, and Details (ODD) protocol to further discussions among multi-
disciplinary researchers about their models. ODD emerged as an effort to “make
model descriptions more understandable and complete, thereby making ABMs
less subject to criticism for being irreproducible” as Grimm et al. state [7]. If we
want to track the ODD description in the model development phases we would
identify it as the simulation model specification or at the very least an interme-
diate step between the conceptual model and the simulation model specification.
The protocol has seven thematic sections: “Purpose”, “Entities, State Variables
and Scales”, “Process Overview and Scheduling”, “Design Concepts”, “Initial-
isation”, “Input Data” and “Sub- models” [8]. Each section contains questions
to guide modellers in the provision of related model details.

Figure 1, for example, shows the questions for the “Entities, State Variables
and Scales” element of a model. The modeller provides the model definition by
answering all the questions. The emerging document with the ODD specifications
can be quite large, depending on the model it describes. The answers appear in-
formally, and one can portray the protocol as a group of informal entities. The
questions attempt to cover different perspectives of the conceptual model so that
all researchers have eventually the same impression of what the model entails.
Nowadays, many journals consider the ODD protocol as a prerequisite for the
publication of an ABM model. Although this is a big step towards verification,
validation and reproducibility of simulation models, the informal character of
the answers allow ambiguities in the model description. Platforms such as the



4 T. D. Xanthopoulou et al.

Fig. 1. Informal ODD: Questions and Specification
ODD Ele-
ment

Questions Specification

Entity,
State Vari-
ables, and
Scales

What kind of entities are in the
model? Do they represent man-
agers, voters, landowners, firms
or something else? By what state
variables or attributes are these
entities characterised? What are
the temporal and spatial resolu-
tions and extents of the model?

The agents represent sheep and wolves,
and the environment is grassland that
they inhabit. Both wolves and sheep
have energy that they use to move
around. On the other hand, the grass
contains energy. The space represents
a grassland and the time is not defined
by the modeller, but, given the model
dynamics, it should be within the life-
time of a sheep.

“ComSES Network OpenABM” mentioned in [12] enable the upload and sharing
of ABMs in terms of executable code, ODD and other descriptions to promote
model transparency and reuse and to move further towards a scientific handling
of ABMs. There are more than 80 platforms that accommodate ABMs based
on different programming languages [3]. SWARM covers a large range of mod-
els, MASON exhibits fast computational time and Repast is considered the best
choice time-wise and modelling-wise [3, 19]. Unsurprisingly, all of them display
shortcomings. For example, Repast is not well documented [19]. Our choice for a
low-level language and simulation platform is NetLogo [26]. Uri Wilensky created
NetLogo to facilitate the development of Agent-Based Modelling and Simulation.
The platform has been widely used in the modelling community, and it is rela-
tively simple for non-programmers to use [10], especially in the construction of
ABMs [17]. Not only does NetLogo make it easier to develop a model, but it also
provides an interface that facilitates simulations and reduces the amount of time
needed to design them. In essence, a person with no modelling experience can
explore a NetLogo model on the platform. Finally, NetLogo is an open source
software.

2.2 DSLs and MPS

Domain-specific languages (DSLs) help efficient development and artefacts. How-
ever, it is not enough to have a DSL; one also needs an appropriate tool to work
with the DSL. This is normally accomplished with a meta-tool creating a DSL
tool out of a DSL description. Such meta-tool is called language workbench.

To build our tool, which we call ODD2ABM, we selected the Meta Program-
ming System (MPS), a free platform for the creation of DSLs [13]. MPS provides
projectional editing, which makes it easier to update a meta-model [9], in our
case ODD2ABM. We create an ODD inspired editor so that the experience of
importing the specifications resembles the experience of writing the ODD in a
text file. A DSL description in MPS is structured in the aspects structure, edi-



Code Generation from High-Level Models 5

tor, generator, and constraints. Finally, MPS provides tabular and diagrammatic
notations in addition to plain text.

2.3 Related Work

Domain-specific languages together with Model Driven Development (MDD) [4]
have often been used to solve problems similar to ours. DSLs aspire to provide
the model definition in a high-level language so that experts can understand
and modify the (domain-specific) model. MDD aims to automate the processes
from the high-level description to the lower-level code. The processes of interest
make use of languages with different abstraction levels and usually move from
a high-level to a low-level language. The developer defines the transformations
from one stage to the other. The end user inputs specifications in the high-level
language and the DSL tool (semi)automatically generates the next stage artefact
or the final code in the low-level language.

Some researchers have worked on the formalisation of certain aspects of
ABMs, such as interactions [15]. Others have built meta-models that specialise
within specific domains. The MAIA meta-model (Modelling Agent systems based
on Institutional Analysis) covers Social Simulations with Institutional Analysis
and semi-automatic code generation [6]. MDA4ABMS merges both DSL and
MDD methodologies, but the user needs some modelling experience to handle
the high-level language, and the tool does not automatically provide the low-
level language artefact [4]. Also, the inclusion of UML (Unified Modelling Lan-
guage) [18], which is applied in the methodology, has often been discarded by
other researchers due to its lack of expressiveness [21]. Similarly, the easyABMS
methodology includes UML and does not provide automatic code generation but
takes into account all the modelling and simulation phases and can be used for
general processes [5]. The meta-model introduced by Santos et al. [21] automat-
ically generates code, and has been evaluated as very efficient; however, it only
functions for a particular domain. Finally, adaptations of Multi-Agent method-
ologies to Agent-Based have been able to establish a common high-level formal
language, but these do not include automatic code generation [11].

3 Methodology

This paper aims at creating a DSL and an associated tool for the construc-
tion and modification of ABMs. The central idea is that the user will input the
conceptual model in the DSL and the tool will automatically generate the simu-
lation model in NetLogo executable code. Apart from advantages related to the
creation or modification time of conceptual and simulation models, the method
provides build-in verification of the model. The main reason is that there is a
deterministic relationship between input (formally described conceptual model)
and output (executable code or simulation model). In essence, the verification
is the tool itself. The goal is to start from simple models, so that we obtain a
proof of concept for our idea, and then extend the work to more complex ABMs.



6 T. D. Xanthopoulou et al.

The tool should be easy to use, extensible, and allow automatic code generation
from the model definitions produced by subject-matter experts. Our method-
ology integrates aspects of MDD and DSL. The DSL ensures user-friendliness
and accommodates diverse models, while the MDD is used to provides the code
generation into a lower level simulation language. Using MPS as the tool of
choice for DSL development enables a focus onto the language description. MPS
will generate a neat and efficient DSL tool directly and automatically from the
language description.

As ODD already is a DSL for social models, a tool that transforms an ODD
to NetLogo would solve our problem. However, ODD is not formal enough for
a direct transformation. Still, we argue that instead of creating our DSL from
scratch, using the methodologies proposed by [5, 11, 21], we can take advantage
of the accumulated experience of researchers that the ODD incorporates and
formalise it (i.e. we make the descriptions already in ODD more formal). Some
of the advantages of using the protocol as a starting point include its pre-existing
structure [14] and its inclusion of Agent-Based Modelling domain concerns that
cover the need for the DSLs broadness and extensibility. Skipping the domain
analysis and spending less energy to organise ODD, reduces the effort of the
DSL development. Although Santos et al. [21] used the ODD protocol to refine
the collection of concepts for the domain analysis of their case study, researchers
have not yet taken full advantage of it to render ABMs more accessible.

We argue that NetLogo is a good starting point as the simulation language
of our tool since it is well documented [1] and accommodates a variety of models
(but not large scale ones). Since it is a higher-level language than general-purpose
programming languages such as Java, it will be easier to design transformations
from NetLogo to Java or similar programming languages in a later phase of our
project.

Using this method, the two remaining challenges are: (1) a formalisation of
the sections of ODD with important information for the simulation, and (2) a
description of the transformation from ODD to NetLogo. The formalisation of
ODD is closely related to the user friendliness of ODD2ABM. We want to make
our DSL so accessible that it could be used by experts without any programming
experience. This ease of use is intended to encourage and enable such users to
construct and adapt AMBs without overly relying on computer scientists and
coders. Moreover, we want to make our DSL capable of incorporating a broad
range of models. Integrated perspectives support robust models such as [16]. In
this example, Kuil et al. incorporated a fusion of social and ecological dynamics
that managed to explain the decline of the Mayan civilisation [16]. Therefore, it
is important to accommodate different types of models and not restrict users to
a specific domain.

The two main challenges in the creation of a formal ODD are the repetition of
information, and missing information. Missing information is information that is
available in the NetLogo code, but that is not present in the ODD. For such infor-
mation we have to find out whether the information can be generated from other
existing information, or whether it must be included into the ODD.Repeated in-



Code Generation from High-Level Models 7

formation could be handled by just ignoring the duplicated parts. However, it is
important that the formal parts of ODD are reliable and if there is duplicated
information, it has to be synchronized. In MPS this problem involves determin-
ing the primary place of the information and the creation of a reference to it at
all the other uses.

One aspect of the tools friendliness is its capacity to automatically generate
executable code, a task which has previously required programming skills. Using
MPS, it is straightforward for non-programming experts to run their simulations.
Although we have chosen NetLogo as target language for the code generation,
there is still a lot of variability in the actual code to be produced. This again
might influence the choice of concepts in the DSL, as we would prefer concepts
that are easily implemented.

3.1 Meta-model elements

To create ODD2ABM in MPS, we needed to define the structure, constraints,
editor, and generation rules of the DSL. ODD itself comes with an editor as
shown in the Figure 1. ODD2ABM should use a similar editor reusing existing
elements and adding new ones when necessary. It was not clear from the start
which formal elements would be needed for ODD. To determine them, we used
the following systematic procedure. The procedure organised the input in such a
way as to ensure that the ODD user provides the data to cover the specifications.
It resulted in a DSL description for structure and constraints. Finally, we created
generation rules for automatic code generation.

3.2 Procedure for defining the Meta-model Structure

Collection of the ODD elements and questions We selected the ODD
version from Grimm et al. [8], which includes seven ODD elements.

Selection of NetLogo models for concrete model instances and code
Since this is the first version of ODD2ABM, we chose to start with simple models
from the NetLogo library. The models we used are the Segregation Simple model
[24], the Fire simple model [27], and the Wolf Sheep Simple 5 model [25]. For
each of the models, we had an ODD description and NetLogo code. In parallel,
we consulted the NetLogo dictionary [1] and a chapter specialised on Agent-
Based modelling concepts for NetLogo [28]. The dictionary and the ABM concept
overview ensured that the the simplicity of the first test models will not comprise
the extensibility and capacity for variety of our meta-model.

Match of each element with the corresponding code For each element
in the code of the selected models, we attempted to find matching information
in the ODD description. For example, for the element “Entities, State variables,
and Scales” and the entity “sheep” (see Figure1), we registered the code “breed
[sheep a- sheep” and “sheep own [energy]”. Questions such as “What are the



8 T. D. Xanthopoulou et al.

temporal and spatial resolutions and extensions of the model?” are not seman-
tically significant for the code. Using the final code, we distinguished the ODD
elements that produce parts of the code from those that do not.

Identification of the parts of NetLogo code that cannot be extracted
from the ODD specifications One example is the NetLogo entities, which can
be turtles or patches. Turtles are moving agents, which can have capacities such
as interacting with one another and recognising their location. We can think of
patches as part of the grid on the simulation space. They cannot move, but they
have properties that can change (such as colour). Patches interact with turtles
but also with their neighbouring patches. Finally, NetLogo links are connection
lines between the moving agents that indicate some sort of relationship. The
distinction between the different entities is not visible in an ODD specification.
We attempted to distinguish between low-level information that should not be
included into ODD from higher-level information that should be included. The
method to accomplish this was to formulate the information on the level of
ODD. We excluded information not conceptually level and used a low-level way
to produce it.

Creation of questions in the ODD language to accommodate code
generation To follow up the previous example, we created questions on whether
the entity is part of the environment or not. The questions were first captured
in a flow diagram. Then they were incorporated in the editor description or
editor structure. For example, there is a different place in the editor to define
general entities and environmental entities. The same procedure applies for the
rest of the model.The answers are the specifications of the meta-model, which
enable the code generation. The specifications with no semantic significance for
the code generation, such as the Purpose statement (see Figure 3 require an
informal textual answer.

Grouping questions that reappear It is possible to locate the same questions
in multiple positions of ODD. For example, to define the descriptive character-
istics of the environment or the total population or the attribute of an entity we
need to input the same type of specifications. There are two reasons for grouping
this information: first to reduce the time for the DSL development and second to
enhance the visual representation of the specifications by reducing the amount
of information in them.

Extraction of the DSL structure from the diagram Figure 2 illustrates
part of the concepts of the DSL that relate to the ODD element “Entities, State
Variables and Scales”. Each user input corresponds to either a DSL concept (for
example the concept Entity) or to a DSL concept attribute (for example the
attribute label of the concept Entity).



Code Generation from High-Level Models 9

Fig. 2. UML class diagram of Entities, State Variables, and Scales

Registration of constraints that emerge from the structure Finally,
we made sure that specifications are meaningful and did not violate common
sense. For this, we extracted the informal conditions placed on the concepts and
formalize them as MPS constraints. If we take the example of the entity sheep
(Figure 3), we read that it contains the attribute ”energy”. The attribute is of
type float. This will determine the next specification, which will be to define the
range of values. If energy was of type string, then the editor would request a list of
string values. In addition, the type of the variable and the specification “float”
will constrain the input for other elements such as the initialisation. Finally,
action is possible only for the defined attributes. The type of attribute selected
in the specifications of “Entities, State Variables, and Scales” will constrain
the value that the user imports in the Initialisation element. For example, the
attribute “energy” was defined as “float”. If the user were to assign a string
value, the editor would not have accepted it. Overall, there are two types of
constraints: those associated with the description in the specification and those
associated with whether a specification is even available according to previous
input.

3.3 Editor

The UML diagrams of the newly formalised ODD structure resemble the dia-
grams of the informal one in the sense that they expand from the seven elements.
The identified questions of step five complement the initial ODD structure. The
editor for ODD is providing textual and tabular syntax for the structural el-
ements of ODD. The original look and feel of ODD is kept by putting the
elements into text as much as possible and keeping the concepts at the same
language level. The editor of MPS provides state-of-the-art content already from
the start. Some more advanced features can be added manually. In particular, for
the case of ODD it is important that the required input is very specific, except
for answers with no semantic significance. For example, we can see in Figure 3,
that the editor description is “Color is defined for the entity”. The initial text is
“Color ¡Press Alt and Enter to choose to include or not include color¿ defined for
the entity”. When the user presses Alt and Enter the only choices are “is” and
“is not”. The MPS editor provides auto-complete to help users identify possible



10 T. D. Xanthopoulou et al.

Fig. 3. Formalised ODD in MPS

continuations and lists where we want to define the possible answers, as well as
static checks on the fly in order to avoid wrong inputs. For more complex inputs,
the editor description indicates and checks the right way to configure the text.
Because of the projectional editor poperty of MPS, it is not possible to see ques-
tions that are not enabled in the current model. For example, in the previous
example, when the user selects “is not” then the part where the user specifies the
color method and the specific color choice, currently visible in Figure 3, are not
shown. The editor appearance is derived from the questions, which is similar to
the corresponding concepts (see Figure 2). Overall, the elements are connected
and the full UML diagram shows all the connections.

3.4 Executable Code Generation

Normally, code generation follows the flow of information as given in the ODD
structure. Still, depending on the place in the generated code, it might be the
case that more information is collected from different parts of the specification.
For example, even though we choose to specify whether an entity has a color in
the Entities State Variables and Scales element, MPS uses these specifications
to generate code in the Initialisation part.

Code generation requires the specification to be statically correct, i.e. all con-
straints should be satisfied. This is checked already in the editor and signalled to
the user.Code generation is normally disabled as long as there are errors in the



Code Generation from High-Level Models 11

specification. Vice versa, utmost care was given to make sure that the code gen-
eration is successful whenever the specification is statically correct. For example,
if we look at Figure ??, generating the code “sheep own [energy]” requires the
user to assign the attribute “energy” to the entity “sheep”. If no entity has been
defined, it will not be possible to define an attribute for it. Moreover, the label
of the attribute has to be defined in order to enable generation of correct code.
Sometimes code is only generated under specific circumstances, which explains
why some rows in the “Generated Code” column are empty.

We can identify two categories of code in NetLogo: the code for the model
definition and the code for the simulation setup. In our DSL, we do not dif-
ferentiate between the two types. To the best of our knowledge, all models in
NetLogo contain the Setup and the Go buttons in the NetLogo interface. Using
these buttons, the modeller can restore the entities to the initial condition and
start/stop the simulation. Even if the particular naming of the buttons (“Setup”
and “Go”) is not mandatory, the code does not run without the existence and
pressing of a button in the user interface. All procedures are initiated when
called directly or indirectly from one NetLogo button. Therefore, we choose the
generation “Setup” and “Go” buttons by default in the code generation from
the DSL.

4 Solution

We performed the eight-step procedure outlined in Section 3.2 for the four ODD
elements: “Purpose”, “Entity, State Variables, and Scales”, “Process Overview
and Scheduling”, and “Initialisation”. For each one, we created a Diagram that
summarised the meta-model specifications and extracted the UML diagram. We
verified the tool for the first 3 elements using the 3 NetLogo models (the Wolf-
Sheep Simple 5, Segregation and Fire model). Figure 2 shows part of the struc-
ture for the Entities element and Figure 3 shows the editor from which the code
“breed [sheep a- sheep” and “sheep own [energy]” was generated. The editor text
serves as the ODD document.

5 Evaluation

5.1 Expressivity and Extension

We created our DSL based on relatively simple models and so cannot guarantee
that ODD2ABM covers the range of model specifications that are needed for
social simulation. However, the concepts are carefully chosen to cover a broad
range of application such that there is at least a major range of possible specifi-
cations. In the future, we will validate the DSL with more complex ABMs and
introduce more specifications. For example, we plan to further develop several
aspects of the tool such as how it deals with interactions and relationships among
agents marked in NetLogo with links, and add the possibility of importing data
from files external to the platform. The extensibility of our DSL is ensured by
MPS and the conceptual framework we adopted.



12 T. D. Xanthopoulou et al.

5.2 ODD and Experts

The ODD protocol gave us the opportunity to enrich it as a DSL with some
modifications without losing its accessibility for users with limited programming
skills. The question remains whether the level of the language is high enough
for thematicians to engage with it. Part of the concern lies in the fact that the
original ODD targets modellers. We all use models (in a general sense) in our
everyday lives. However, the concepts employed in the Agent-Based Modelling
community, such as entities and attributes, may not be intuitively clear to all
users. Therefore, even if the tool is very effective for modellers, experts not
familiar with the ODD language may face difficulties in its implementation. In
a next stage of development we will evaluate the usefulness of ODD2ABM.

6 Summary and Future Steps

The ODD2ABM tool described in this paper serves as a proof of concept for
a methodology that incorporates DSL and MDD, uses the MPS platform, en-
ables experts to create, modify their ABMs and provides a new way to ensure
reproducibility of results. During the construction of this tool, we were careful to
ensure its user-friendliness and extensibility. We selected the ODD protocol as
the basis for our DSL and NetLogo as our low-level language. The resulting DSL
is original in its capabilities and properties as it accommodates a large range of
modelling themes and enables automatic executable code generation. We plan
to broaden ODD2ABM so that it allows more freedom in model creation. A next
step would be to survey experts from different disciplines to discover whether our
formalisation of the ODD protocol needs to be abstracted further in a process
such as the one defined in [20].

References

1. Netlogo dictionary, https://ccl.northwestern.edu/netlogo/docs/dictionary.html
2. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.P.: Agent based

modelling and simulation tools: A review of the state-of-art software. Computer
Science Review 24, 13–33 (2017)

3. Abar, S., Theodoropoulos, G.K., Lemarinier, P., OHare, G.M.:
Agent based modelling and simulation tools: A review of the state-
of-art software. Computer Science Review 24, 13 – 33 (2017),
http://www.sciencedirect.com/science/article/pii/S1574013716301198

4. Garro, A., Parisi, F., Russo, W.: A Process Based on the Model-Driven
Architecture to Enable the Definition of Platform-Independent Simulation
Models, pp. 113–129. Springer Berlin Heidelberg, Berlin, Heidelberg (2013),
https://doi.org/10.1007/978-3-642-34336-0 8

5. Garro, A., Russo, W.: Easyabms: A domain-expert oriented
methodology for agent-based modeling and simulation. Simula-
tion Modelling Practice and Theory 18(10), 1453 – 1467 (2010),
http://www.sciencedirect.com/science/article/pii/S1569190X10000717,
simulation-based Design and Evaluation of Multi-Agent Systems



Code Generation from High-Level Models 13

6. Ghorbani, A., Bots, P., Dignum, V., Dijkema, G.: Maia: a framework for developing
agent-based social simulations. Journal of Artificial Societies and Social Simulation
16(2), 9 (2013), http://jasss.soc.surrey.ac.uk/16/2/9.html

7. Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske,
J., Railsback, S.F.: The odd protocol: A review and first
update. Ecological Modelling 221(23), 2760 – 2768 (2010),
http://www.sciencedirect.com/science/article/pii/S030438001000414X

8. Grimm, V., Polhill, G., Touza, J.: Documenting Social Simulation Models: The
ODD Protocol as a Standard, pp. 117–133. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013), https://doi.org/10.1007/978-3-540-93813-2 7

9. Guttormsen, S., Prinz, A., Gjøsæter, T.: Consistent projectional text editors. In:
MODELSWARD. pp. 515–522 (2017)

10. Hamill, L.: Agent-based modelling: The next 15 years. Journal of Artificial Societies
and Social Simulation 13(4), 11 (2010), http://jasss.soc.surrey.ac.uk/13/4/7.html

11. Hassan, S., Fuentes-Fernández, R., Galán, J.M., López-Paredes, A., Pavón, J.:
Reducing the modeling gap: On the use of metamodels in agent-based simulation.
In: 6th conference of the european social simulation association (ESSA 2009). pp.
1–13 (2009)

12. Janssen, M.A., Alessa, L.N., Barton, M., Bergin, S., Lee, A.: Towards a community
framework for agent-based modelling. Journal of Artificial Societies and Social
Simulation 11(2), 6 (2008), http://jasss.soc.surrey.ac.uk/11/2/6.html

13. JetBrains: MPS Meta Programming System, https://www.jetbrains.com/mps/
14. Klügl, F., Davidsson, P.: Amason: Abstract meta-model for agent-based simulation.

In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) Multiagent System Technologies.
pp. 101–114. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

15. Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations:
From theory to implementation. In: Proceedings of the 2008 Conference
on ECAI 2008: 18th European Conference on Artificial Intelligence. pp.
383–387. IOS Press, Amsterdam, The Netherlands, The Netherlands (2008),
http://dl.acm.org/citation.cfm?id=1567281.1567367

16. Kuil, L., Carr, G., Viglione, A., Prskawetz, A., Blschl, G.: Conceptualizing socio-
hydrological drought processes: The case of the maya collapse. Water resources
research 52(8), 6222–6242 (2016)

17. Lytinen, S.L., Railsback, S.F.: The evolution of agent-based simulation platforms:
A review of netlogo 5.0 and relogo. In: Proceedings of the fourth international
symposium on agent-based modeling and simulation (21st European Meeting on
Cybernetics and Systems Research [EMCSR 2012 (2012)

18. OMG: Unified Modeling Language: Infrastructure version 2.4.1 (OMG Document
formal/2011-08-05). OMG Document, Published by Object Management Group,
http://www.omg.org (August 2011)

19. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms:
Review and development recommendations. SIMULATION 82(9), 609–623 (2006),
https://doi.org/10.1177/0037549706073695

20. Santos, F., Nunes, I., Bazzan, A.L.C.: Supporting the development of agent-based
simulations: A dsl for environment modeling. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC). vol. 1, pp. 170–179 (July
2017)

21. Santos, F., Nunes, I., Bazzan, A.L.: Model-driven agent-based simulation devel-
opment: A modeling language and empirical evaluation in the adaptive traffic
signal control domain. Simulation Modelling Practice and Theory 83, 162 – 187



14 T. D. Xanthopoulou et al.

(2018), http://www.sciencedirect.com/science/article/pii/S1569190X17301673,
agent-based Modelling and Simulation

22. Sargent, R.G.: Verification and validation of simulation models. In: Proceedings of
the 2010 Winter Simulation Conference. pp. 166–183 (Dec 2010)

23. Wildman, W.J., Fishwick, P.A., Shults, F.L.: Teaching at the intersection
of simulation and the humanities. In: 2017 Winter Simulation Conference,
WSC 2017, Las Vegas, NV, USA, December 3-6, 2017. pp. 4162–4174 (2017),
https://doi.org/10.1109/WSC.2017.8248136

24. Wilensky, U.: Netlogo seggregation model. Report, Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern University, Evanston, IL (1997),
http://ccl.northwestern.edu/netlogo/models/Fire

25. Wilensky, U.: Netlogo wolf sheep predation model. Report, Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL
(1997), http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation

26. Wilensky, U.: Netlogo. Report, Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL (1999),
http://ccl.northwestern.edu/netlogo/

27. Wilensky, U.: Netlogo fire model. Report, Center for Connected Learning
and Computer-Based Modeling, Northwestern University, Evanston, IL (2006),
http://ccl.northwestern.edu/netlogo/models/Fire

28. Wilensky, U., Rand, W.: The Components of Agent-Based Modeling, pp. 203–282.
The MIT Press, Cambridge, Massachusetts ;, 1st edn. (2015)

29. Wurzer, G., Kowarik, K., Reschreiter, H.: Agent-based modeling and simulation in
archaeology. Springer (2015)


