Skip to main content

Game Theoretic Approaches to Cyber Security: Challenges, Results, and Open Problems

  • Chapter
  • First Online:
Adversarial and Uncertain Reasoning for Adaptive Cyber Defense

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11830))

Abstract

We formulate cyber security problems with many strategic attackers and defenders as stochastic dynamic games with asymmetric information. We discuss solution approaches to stochastic dynamic games with asymmetric information and identify the difficulties/challenges associated with these approaches. We present a solution methodology for stochastic dynamic games with asymmetric information that resolves some of these difficulties. Our main results are based on certain key assumptions about the game model. Therefore, our methodology can solve only specific classes of cyber security problems. We identify classes of cyber security problems that our methodology cannot solve and connect these problems to open problems in game theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aumann, R.: Agreeing to disagree. Ann. Stat. 4, 1236–1239 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aumann, R., Maschler, M., Stearns, R.: Repeated Games with Incomplete Information. MIT Press, Cambridge (1995)

    Google Scholar 

  3. Cardaliaguet, P., Rainer, C., Rosenberg, D., Vieille, N.: Markov games with frequent actions and incomplete information-the limit case. Math. Oper. Res. 41(1), 49–71 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ely, J., Hörner, J., Olszewski, W.: Belief-free equilibria in repeated games. Econometrica 73(2), 377–415 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Escobar, J., Toikka, J.: Efficiency in games with Markovian private information. Econometrica 81(5), 1887–1934 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Etherington, D., Conger, K.: Large DDos attacks cause outages at Twitter, spotify, and other sites. TechCrunch, Np, 21 (2016)

    Google Scholar 

  7. Finkle, J., Skariachan, D.: Target cyber breach hits 40 million payment cards at holiday peak. http://www.reuters.com/article/us-target-breach-idUSBRE9BH1GX20131219. Accessed 09 Sept 2016

  8. Fudenberg, D., Levine, D., Maskin, E.: The folk theorem with imperfect public information. Econometrica 62(5), 997 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fudenberg, D., Tirole, J.: Game theory. Cambridge, Massachusetts, vol. 393, no. 12, p. 80 (1991)

    Google Scholar 

  10. Gensbittel, F., Renault, J.: The value of Markov chain games with incomplete information on both sides. Math. Oper. Res. 40(4), 820–841 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greenberg, A.: Hackers remotely kill a jeep on the highway? With me in it, Wired. https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway. Accessed 15 Dec 2016

  12. Gupta, A., Nayyar, A., Langbort, C., Başar, T.: Common information based Markov perfect equilibria for linear-Gaussian games with asymmetric information. SIAM J. Control Optim. 52(5), 3228–3260 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hörner, J., Lovo, S.: Belief-free equilibria in games with incomplete information. Econometrica 77(2), 453–487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hörner, J., Lovo, S., Tomala, T.: Belief-free equilibria in games with incomplete information: characterization and existence. J. Econ. Theory 146(5), 1770–1795 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hörner, J., Sugaya, T., Takahashi, S., Vieille, N.: Recursive methods in discounted stochastic games: an algorithm for \(\delta \rightarrow 1\) and a folk theorem. Econometrica 79(4), 1277–1318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, L., Langbort, C., Shamma, J.: Solving two-player zero-sum repeated Bayesian games. arXiv preprint arXiv:1703.01957 (2017)

  17. Li, L., Shamma, J.: LP formulation of asymmetric zero-sum stochastic games. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 1930–1935. IEEE (2014)

    Google Scholar 

  18. Mahajan, A., Mannan, M.: Decentralized stochastic control. Ann. Oper. Res. 241(1–2), 109–126 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mailath, G., Samuelson, L.: Repeated Games and Reputations. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  20. Maskin, E., Fudenberg, D.: The folk theorem in repeated games with discounting or with incomplete information. Econometrica 53(3), 533–554 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Maskin, E., Tirole, J.: Markov perfect equilibrium: I. Observable actions. J. Econ. Theory 100(2), 191–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matsushima, H.: Repeated games with private monitoring: two players. Econometrica 72(3), 823–852 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miehling, E., Rasouli, M., Teneketzis, D.: A POMDP approach to the dynamic defense of large-scale cyber networks. IEEE Trans. Inf. Forensics Secur. 13(10), 2490–2505 (2018)

    Article  Google Scholar 

  24. Miller, D.: Robust collusion with private information. Rev. Econ. Stud. 79(2), 778–811 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Myerson, R.: Game Theory. Harvard University Press, Cambridge (2013)

    Google Scholar 

  26. Nayyar, A., Gupta, A.: Information structures and values in zero-sum stochastic games. In: 2017 American Control Conference (ACC), pp. 3658–3663. IEEE (2017)

    Google Scholar 

  27. Nayyar, A., Gupta, A., Langbort, C., Başar, T.: Common information based Markov perfect equilibria for stochastic games with asymmetric information: finite games. IEEE Trans. Autom. Control 59(3), 555–570 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Department of Homeland Security. Industrial control systems cyber emergency response team (ICS-CERT). https://ics-cert.us-cert.gov

  29. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  30. Ouyang, Y., Tavafoghi, H., Teneketzis, D.: Dynamic oligopoly games with private Markovian dynamics. In: 54th IEEE Conference on Decision and Control (CDC) (2015)

    Google Scholar 

  31. Ouyang, Y., Tavafoghi, H., Teneketzis, D.: Dynamic games with asymmetric information: common information based perfect Bayesian equilibria and sequential decomposition. IEEE Trans. Autom. Control 62(1), 222–237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Renault, J.: The value of Markov chain games with lack of information on one side. Math. Oper. Res. 31(3), 490–512 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sinha, A., Anastasopoulos, A.: Structured perfect Bayesian equilibrium in infinite horizon dynamic games with asymmetric information. In: American Control Conference (2016)

    Google Scholar 

  34. Sugaya, T.: Folk theorem in repeated games with private monitoring. Working Paper (2019)

    Google Scholar 

  35. Sugaya, T.: Folk theorem in stochastic games with private state and private monitoring. Working Paper (2012)

    Google Scholar 

  36. Tavafoghi, H.: On design and analysis of cyber-physical systems with strategic agents. Ph.D. thesis, University of Michigan (2017)

    Google Scholar 

  37. Tavafoghi, H., Ouyang, Y., Teneketzis, D.: On stochastic dynamic games with delayed sharing information structure. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7002–7009. IEEE (2016)

    Google Scholar 

  38. Tavafoghi, H., Ouyang, Y., Teneketzis, D.: A unified approach to dynamic decision problems with asymmetric information-part i: non-strategic agents. Submitted to IEEE Transactions on Automatic Control (2018). arXiv:1812.01130

  39. Tavafoghi, H., Ouyang, Y., Teneketzis, D.: A unified approach to dynamic decision problems with asymmetric information-part ii: strategic agents. Submitted to IEEE Transactions on Automatic Control (2018). arXiv:1812.01132

  40. Vasal, D., Anastasopoulos, A.: Signaling equilibria for dynamic LQG games with asymmetric information. In: 55th IEEE Conference on Decision and Control (CDC), pp. 6901–6908. IEEE (2016)

    Google Scholar 

  41. Washburn, R.B., Teneketzis, D.: Asymptotic agreement among communicating decisionmakers. Stoch.: Int. J. Prob. Stoch. Processes 13(1–2), 103–129 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Watson, J.: Perfect Bayesian equilibrium: general definitions and illustrations. Working Paper (2016)

    Google Scholar 

  43. Yamamoto, Y.: A limit characterization of belief-free equilibrium payoffs in repeated games. J. Econ. Theory 144(2), 802–824 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zamir, S.: Repeated games of incomplete information: zero-sum. Handb. Game Theory 1, 109–154 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NSF grants CNS-1238962, ARO-MURI grant W911NF-13-1-0421, and ARO grant W911NF-17-1-0232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demosthenis Teneketzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tavafoghi, H., Ouyang, Y., Teneketzis, D., Wellman, M.P. (2019). Game Theoretic Approaches to Cyber Security: Challenges, Results, and Open Problems. In: Jajodia, S., Cybenko, G., Liu, P., Wang, C., Wellman, M. (eds) Adversarial and Uncertain Reasoning for Adaptive Cyber Defense. Lecture Notes in Computer Science(), vol 11830. Springer, Cham. https://doi.org/10.1007/978-3-030-30719-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30719-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30718-9

  • Online ISBN: 978-3-030-30719-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics