Skip to main content

Empirical Game-Theoretic Methods for Adaptive Cyber-Defense

  • Chapter
  • First Online:
Adversarial and Uncertain Reasoning for Adaptive Cyber Defense

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11830))

  • 1014 Accesses

Abstract

Game-theoretic applications in cyber-security are often restricted by the need to simplify complex domains to render them amenable to analysis. In the empirical game-theoretic analysis approach, games are modeled by simulation, thus significantly increasing the level of complexity that can be addressed. We survey applications of this approach to scenarios of adaptive cyber-defense, illustrating how the method operates, and assessing its strengths and limitations .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Including dedicated annual conferences, such as GameSec (Bushnell et al. 2018; Rass et al. 2017a).

  2. 2.

    Such generalization is also often needed for the more general case of games where there are many players (Sokota et al. 2019; Wiedenbeck et al. 2018).

References

  • Albanese, M., Connell, W., Venkatesan, S., Cybenko, G.: Moving target defense quantification. In: Jajodia et al. (2019)

    Google Scholar 

  • Bowers, K.D., van Dijk, M., Griffin, R., Juels, A., Oprea, A., Rivest, R.L., Triandopoulos, N.: Defending against the unknown enemy: applying FlipIt to system security. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 248–263. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34266-0_15

    Chapter  MATH  Google Scholar 

  • Bushnell, L., Poovendran, R., Başar, T. (eds.): GameSec 2018. LNCS, vol. 11199. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01554-1

    Book  Google Scholar 

  • Čagalj, M., Ganeriwal, S., Aad, I., Hubaux, J.-P.: On selfish behavior in CSMA/CA networks. In: 24th IEEE International Conference on Computer Communications, pp. 2513–2524 (2005)

    Google Scholar 

  • Chapman, M.: Cyber Hide-and-Seek. Ph.D. thesis, King’s College London (2016)

    Google Scholar 

  • Duong, Q., LeFevre, K., Wellman, M.P.: Strategic modeling of information sharing among data privacy attackers. Informatica 34, 151–158 (2010)

    MATH  Google Scholar 

  • Edwards, B., Furnas, A., Forrest, S., Axelrod, R.: Strategic aspects of cyberattack, attribution, and blame. Proc. Natl. Acad. Sci. 114, 2825–2830 (2017)

    Article  Google Scholar 

  • Evans, D., Nguyen-Tuong, A., Knight, J.: Effectiveness of moving target defenses. In: Jajodia et al. (2011)

    Google Scholar 

  • Farhang, S., Grossklags, J.: FlipLeakage: a game-theoretic approach to protect against stealthy attackers in the presence of information leakage. In: Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS, vol. 9996, pp. 195–214. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47413-7_12

    Chapter  MATH  Google Scholar 

  • Fearnley, J., Gairing, M., Goldberg, P., Savani, R.: Learning equilibria of games via payoff queries. In: 14th ACM Conference on Electronic Commerce (2013)

    Google Scholar 

  • Frazier, G., Duong, Q., Wellman, M.P., Petersen, E.: Incentivizing responsible networking via introduction-based routing. In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 277–293. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21599-5_21

    Chapter  Google Scholar 

  • Jajodia, S., Ghosh, A.K., Swarup, V., Wang, C., Sean Wang, X. (eds.): Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer, New York (2011). https://doi.org/10.1007/978-1-4614-0977-9

    Book  Google Scholar 

  • Jajodia, S., Cybenko, G., Liu, P., Wang, C., Wellman, M.P. (eds.): Adversarial and Uncertain Reasoning for Adaptive Cyber Defense. Springer, Champ (2019). https://doi.org/10.1007/978-3-030-30719-6

    Book  Google Scholar 

  • Jia, Q., Sun, K., Stavrou, A.: MOTAG: moving target defense against internet denial of service attacks. In: 22nd International Conference on Computer Communications and Networks (2013)

    Google Scholar 

  • Jones, S., et al.: Evaluating moving target defense with PLADD. Technical report 8432R, Sandia National Lab (2015)

    Google Scholar 

  • Jordan, P.R., Schvartzman, L.J., Wellman, M.P.: Strategy exploration in empirical games. In: 9th International Conference on Autonomous Agents and Multi-Agent Systems, pp. 1131–1138 (2010)

    Google Scholar 

  • Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13, 1–38 (2014)

    Article  Google Scholar 

  • Lanctot, M., et al.: A unified game-theoretic approach to multiagent reinforcement learning. In: 31st Annual Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  • Laszka, A., Johnson, B., Grossklags, J.: Mitigating covert compromises. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 319–332. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45046-4_26

    Chapter  MATH  Google Scholar 

  • Laszka, A., Horvath, G., Felegyhazi, M., Buttyán, L.: FlipThem: modeling targeted attacks with FlipIt for multiple resources. In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp. 175–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12601-2_10

    Chapter  MATH  Google Scholar 

  • Manshaei, M.H., Zhu, Q., Alpcan, T., Başar, T., Hubaux, J.-P.: Game theory meets network security and privacy. ACM Comput. Surv. 45(25), 1–39 (2013)

    Article  Google Scholar 

  • McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: software tools for game theory, Version 13.1.2 (2014). www.gambit-project.org

  • Miehling, E., Rasouli, M., Teneketzis, D.: Optimal defense policies for partially observable spreading processes on Bayesian attack graphs. In: Second ACM Workshop on Moving Target Defense, pp. 67–76 (2015)

    Google Scholar 

  • Naghizadeh, P., Liu, M.: Opting out of incentive mechanisms: a study of security as a non-excludable public good. IEEE Trans. Inf. Forensics Secur. 11, 2790–2803 (2016)

    Article  Google Scholar 

  • Nguyen, T.H., Wright, M., Wellman, M.P., Singh, S.: Multi-stage attack graph security games: heuristic strategies, with empirical game-theoretic analysis. In: Fourth ACM Workshop on Moving Target Defense, pp. 87–97 (2017)

    Google Scholar 

  • Pfleeger, C.P., Pfleeger, S.L.: Analyzing Computer Security: A Threat/Vulnerability/Countermeasure Approach. Prentice Hall, Upper Saddle River (2012)

    Google Scholar 

  • Pham, V., Cid, C.: Are we compromised? Modelling security assessment games. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 234–247. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34266-0_14

    Chapter  MATH  Google Scholar 

  • Phillips, C., Swiler, L.P.: A graph-based system for network-vulnerability analysis. In: Workshop on New Security Paradigms, pp. 71–79 (1998)

    Google Scholar 

  • Prakash, A., Wellman, M.P.: Empirical game-theoretic analysis for moving target defense. In: Second ACM Workshop on Moving Target Defense, pp. 57–65 (2015)

    Google Scholar 

  • Qi, C., Jiangxing, W., Cheng, G., Ai, J., Zhao, S.: Security analysis of dynamic SDN architectures based on game theory. Secur. Commun. Netw. 4123736, 2018 (2018)

    Google Scholar 

  • Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S. (eds.): Decision and Game Theory for Security. LNCS, vol. 10575. Springer, Cham (2017a). https://doi.org/10.1007/978-3-319-68711-7

    Google Scholar 

  • Rass, S., König, S., Schauer, S.: Defending against advanced persistent threats using game-theory. PLoS ONE 12, e0168675 (2017b)

    Article  Google Scholar 

  • Roy, S., Ellis, C., Shiva, S.G., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of game theory as applied to network security. In: 43rd Hawaii International Conference on System Sciences (2010)

    Google Scholar 

  • Schvartzman, L.J., Wellman, M.P.: Stronger CDA strategies through empirical game-theoretic analysis and reinforcement learning. In: 8th International Conference on Autonomous Agents and Multi-Agent Systems, pp. 249–256, Budapest (2009)

    Google Scholar 

  • Silver, D.: Mastering chess and shogi by self-play with a general reinforcement learning algorithm. Technical report, arXiv 1712.01815 (2017)

  • Sinha, A., Fang, F., An, B., Kiekintveld, C., Tambe, M.: Stackelberg security games: looking beyond a decade of success. In: 27th International Joint Conference on Artificial Intelligence, pp. 5494–5501 (2018)

    Google Scholar 

  • Sokota, S., Ho, C., Wiedenbeck, B.: Learning deviation payoffs in simulation-based games. In: 33rd AAAI Conference on Artificial Intelligence, pp. 1266–1273 (2019)

    Google Scholar 

  • Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  • Tavafoghi, H., Yi, O., Teneketzis, D., Wellman, M.P.: Game theoretic approaches to cyber security: issues, results and challenges. In: Jajodia et al. (2019)

    Google Scholar 

  • van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: FlipIt: the game of “stealthy takeover”. J. Cryptol. 26, 655–713 (2013)

    Article  MathSciNet  Google Scholar 

  • Venkatesan, S., Albanese, M., Amin, K., Jajodia, S., Wright, M.: A moving target defense approach to mitigate DDoS attacks against proxy-based architectures. In: IEEE Conference on Communications and Network Security (2016)

    Google Scholar 

  • Vorobeychik, Y.: Probabilistic analysis of simulation-based games. ACM Trans. Model. Comput. Simul. 20(3), 16:1–16:25 (2010)

    Article  Google Scholar 

  • Vorobeychik, Y., Wellman, M.P., Singh, S.: Learning payoff functions in infinite games. Mach. Learn. 67, 145–168 (2007)

    Article  Google Scholar 

  • Wang, Y.: Deep reinforcement learning for green security games with real-time information. In: 33rd AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  • Wellman, M.P.: Putting the agent in agent-based modeling. Auton. Agents Multi-Agent Syst. 30, 1175–1189 (2016)

    Article  Google Scholar 

  • Wellman, M.P., Prakash, A.: Empirical game-theoretic analysis of an adaptive cyber-defense scenario (preliminary report). In: Poovendran, R., Saad, W. (eds.) GameSec 2014. LNCS, vol. 8840, pp. 43–58. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12601-2_3

    Chapter  MATH  Google Scholar 

  • Wellman, M.P., Reeves, D.M., Lochner, K.M., Cheng, S.-F., Suri, R.: Approximate strategic reasoning through hierarchical reduction of large symmetric games. In: 20th National Conference on Artificial Intelligence, pp. 502–508 (2005)

    Google Scholar 

  • Wellman, M.P., Kim, T.H., Duong, Q.: Analyzing incentives for protocol compliance in complex domains: a case study of introduction-based routing. In: Twelfth Workshop on the Economics of Information Security (2013)

    Google Scholar 

  • Wiedenbeck, B., Cassell, B.-A., Wellman, M.P.: Bootstrap techniques for empirical games. In: 13th International Conference on Autonomous Agents and Multi-Agent Systems, pp. 597–604 (2014)

    Google Scholar 

  • Wiedenbeck, B., Yang, F., Wellman, M.P.: A regression approach for modeling games with many symmetric players. In: 32nd AAAI Conference on Artificial Intelligence, pp. 1266–1273 (2018)

    Google Scholar 

  • Wright, M., Wellman, M.P.: Evaluating the stability of non-adaptive trading in continuous double auctions. In: 17th International Conference on Autonomous Agents and Multi-Agent Systems, pp. 614–622 (2018)

    Google Scholar 

  • Wright, M., Venkatesan, S., Albanese, M., Wellman, M.P.: Moving target defense against DDoS attacks: an empirical game-theoretic analysis. In: Third ACM Workshop on Moving Target Defense (2016)

    Google Scholar 

  • Wright, M., Wang, Y., Wellman, M.P.: Iterated deep reinforcement learning in games: history-aware training for improved stability. In: 20th ACM Conference on Economics and Computation (2019)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by the Army Research Office under grant W911NF-13-1-0421.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Wellman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wellman, M.P., Nguyen, T.H., Wright, M. (2019). Empirical Game-Theoretic Methods for Adaptive Cyber-Defense. In: Jajodia, S., Cybenko, G., Liu, P., Wang, C., Wellman, M. (eds) Adversarial and Uncertain Reasoning for Adaptive Cyber Defense. Lecture Notes in Computer Science(), vol 11830. Springer, Cham. https://doi.org/10.1007/978-3-030-30719-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30719-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30718-9

  • Online ISBN: 978-3-030-30719-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics