Skip to main content

Decentralized Indexing over a Network of RDF Peers

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Abstract

Despite the prospect of a vast Web of interlinked data, the Semantic Web today mostly fails to meet its potential. One of the main problems it faces is rooted in its current architecture, which totally relies on the availability of the servers providing access to the data. These servers are subject to failures, which often results in situations where some data is unavailable. Recent advances have proposed decentralized peer-to-peer based architectures to alleviate this problem. However, for query processing these approaches mostly rely on flooding, a standard technique for peer-to-peer systems, which can easily result in very high network traffic and hence cause high query response times. To still enable efficient query processing in such networks, this paper proposes two indexing schemes, which in a decentralized fashion aim at efficiently finding nodes with relevant data for a given query: Locational Indexes and Prefix-Partitioned Bloom Filters. Our experiments show that such indexing schemes are able to considerably speed up query processing times compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

  2. 2.

    http://www.w3.org/TR/rdf-sparql-query/.

  3. 3.

    The source code is available on our GitHub at https://github.com/Chraebe/PPBFs.

  4. 4.

    https://jena.apache.org/.

  5. 5.

    Additional results are available on our website at https://relweb.cs.aau.dk/ppbfs.

References

  1. Aebeloe, C., Montoya, G., Hose, K.: A decentralized architecture for sharing and querying semantic data. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 3–18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_1

    Chapter  Google Scholar 

  2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  Google Scholar 

  3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_18

    Chapter  Google Scholar 

  4. Cai, M., Frank, M.R.: RDFPeers: a scalable distributed RDF repository based on a structured peer-to-peer network. In: WWW, pp. 650–657 (2004)

    Google Scholar 

  5. Čebirić, Š., et al.: Summarizing semantic graphs: a survey. VLDBJ 28, 295–327 (2018)

    Article  Google Scholar 

  6. Crespo, A., Garcia-Molina, H.: Routing indices for peer-to-peer systems. In: ICDCS, pp. 23–32 (2002)

    Google Scholar 

  7. Folz, P., Skaf-Molli, H., Molli, P.: CyCLaDEs: a decentralized cache for triple pattern fragments. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 455–469. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_28

    Chapter  Google Scholar 

  8. Grall, A., et al.: Ladda: SPARQL queries in the fog of browsers. In: Blomqvist, E., Hose, K., Paulheim, H., Ławrynowicz, A., Ciravegna, F., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10577, pp. 126–131. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70407-4_24

    Chapter  Google Scholar 

  9. Grall, A., Skaf-Molli, H., Molli, P.: SPARQL query execution in networks of web browsers. In: DeSemWeb@ISWC 2018 (2018)

    Google Scholar 

  10. Hartig, O., Aranda, C.B.: Bindings-restricted triple pattern fragments. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 762–779. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_48

    Chapter  Google Scholar 

  11. Hasnain, A., Saleem, M., Ngomo, A.N., Rebholz-Schuhmann, D.: Extending largeRDFBench for multi-source data at scale for SPARQL endpoint federation. In: SSWS@ISWC, pp. 203–218 (2018)

    Google Scholar 

  12. Jeffrey, M.C., Steffan, J.G.: Understanding bloom filter intersection for lazy address-set disambiguation. SPAA 2011, 345–354 (2011)

    Google Scholar 

  13. Kaoudi, Z., Koubarakis, M., Kyzirakos, K., Miliaraki, I., Magiridou, M., Papadakis-Pesaresi, A.: Atlas: storing, updating and querying RDF(S) data on top of DHTs. J. Web Sem. 8(4), 271–277 (2010)

    Article  Google Scholar 

  14. Karnstedt, M., et al.: UniStore: querying a DHT-based universal storage. ICDE 2007, pp. 1503–1504 (2007)

    Google Scholar 

  15. Mansour, E., et al.: A demonstration of the solid platform for social web applications. In: WWW Companion, pp. 223–226 (2016)

    Google Scholar 

  16. Molli, P., Skaf-Molli, H.: Semantic web in the fog of browsers. In: DeSemWeb@ISWC 2017 (2017)

    Google Scholar 

  17. Montoya, G., Aebeloe, C., Hose, K.: Towards efficient query processing over heterogeneous RDF interfaces. In: ISWC 2018 Satellite Events, pp. 39–53 (2018)

    Google Scholar 

  18. Montoya, G., Skaf-Molli, H., Hose, K.: The odyssey approach for optimizing federated SPARQL queries. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 471–489. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_28

    Chapter  Google Scholar 

  19. Papapetrou, O., Siberski, W., Nejdl, W.: Cardinality estimation and dynamic length adaptation for bloom filters. Distrib. Parallel Databases 28(2–3), 119–156 (2010)

    Article  Google Scholar 

  20. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and practice of bloom filters for distributed systems. IEEE Commun. Surv. Tutor. 14(1), 131–155 (2012)

    Article  Google Scholar 

  21. Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data summaries for processing live queries over linked data. WWW 14(5–6), 495–544 (2011)

    Article  Google Scholar 

  22. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the web. J. Web Semant. 37–38, 184–206 (2016)

    Article  Google Scholar 

  23. Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: inexpensive membership management for unstructured P2P overlays. J. Netw. Syst. Manag. 13(2), 197–217 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Danish Council for Independent Research (DFF) under grant agreement no. DFF-8048-00051B & DFF-4093-00301B and Aalborg University’s Talent Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Aebeloe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aebeloe, C., Montoya, G., Hose, K. (2019). Decentralized Indexing over a Network of RDF Peers. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11778. Springer, Cham. https://doi.org/10.1007/978-3-030-30793-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30793-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30792-9

  • Online ISBN: 978-3-030-30793-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics