
HapPenIng: Happen, Predict, Infer —
Event Series Completion in a Knowledge Graph

Simon Gottschalk[0000−0003−2576−4640] and
Elena Demidova[0000−0002−5134−9072]

L3S Research Center, Leibniz Universität Hannover, Hannover, Germany
{gottschalk, demidova}@L3S.de

Abstract. Event series, such as the Wimbledon Championships and the
US presidential elections, represent important happenings in key societal
areas including sports, culture and politics. However, semantic reference
sources, such as Wikidata, DBpedia and EventKG knowledge graphs,
provide only an incomplete event series representation. In this paper we
target the problem of event series completion in a knowledge graph. We
address two tasks: 1) prediction of sub-event relations, and 2) inference
of real-world events that happened as a part of event series and are
missing in the knowledge graph. To address these problems, our pro-
posed supervised HapPenIng approach leverages structural features of
event series. HapPenIng does not require any external knowledge - the
characteristics making it unique in the context of event inference. Our
experimental evaluation demonstrates that HapPenIng outperforms the
baselines by 44 and 52 percentage points in terms of precision for the
sub-event prediction and the inference tasks, correspondingly.

1 Introduction

Event series, such as sports tournaments, music festivals and political elections
are sequences of recurring events. Prominent examples include the Wimbledon
Championships, the Summer Olympic Games, the United States presidential
elections and the International Semantic Web Conference. The provision of reli-
able reference sources for event series is of crucial importance for many real-world
applications, for example in the context of Digital Humanities and Web Science
research [7, 9, 25], as well as media analytics and digital journalism [15,23].

Popular knowledge graphs (KGs) such as Wikidata [29], DBpedia [14] and
EventKG [8,10] cover event series only to a limited extent. This is due to multiple
reasons: First, entity-centric knowledge graphs such as Wikidata and DBpedia
do not sufficiently cover events and their spatio-temporal relations [6]. Second,
reference sources for knowledge graphs such as Wikipedia often focus on recent
and current events to the detriment of past events [11]. This leads to the defi-
ciency in supporting event-centric applications that rely on knowledge graphs.

In this work we tackle a novel problem of event series completion in a know-
ledge graph. In particular, we address two tasks: 1) We predict missing sub-event
relations between events existing in a knowledge graph; and 2) We infer real-
world events that happened within a particular event series but are missing in

ar
X

iv
:1

90
9.

06
21

9v
1

 [
cs

.S
I]

 1
2

Se
p

20
19

2 Simon Gottschalk and Elena Demidova

ewc2: “2009 Wimbledon

Championships”

“2009 Wimbledon

Championships – Men's

Singles”

ewc1: “2008 Wimbledon

Championships”

ewc3: “2010 Wimbledon

Championships”

“2010 Wimbledon

Championships –

Men's Singles”

“2009 Wimbledon

Championships – Men's

Singles final”

“2008 Wimbledon

Championships – Men's

Singles”

“2008 Wimbledon

Championships – Men's

Singles final”

“2010 Wimbledon

Championships –

Men's Singles final”

Event Series: Wimbledon Championships

sub-event relation

follow-up

relation

Predicted

sub-event

relation

Event Series: Wimbledon Championships – Men's Singles Event Series: Wimbledon Championships – Men's Singles final

Inferred

event

Fig. 1. A fraction of the Event Graph containing the Wimbledon Championships (WC)
events. Nodes represent events. Solid arrows represent sub-event relations. Dashed ar-
rows represent follow-up event relations. The three upper events are the WC editions.

the knowledge graph. We also infer specific properties of such inferred events
such as a label, a time interval and locations, where possible. Both addressed
tasks are interdependent. The prediction of sub-event relations leads to a more
complete event series structure, facilitating inference of further missing events.
In turn, event inference can also lead to the discovery of new sub-event relations.

The proposed HapPenIng approach exclusively utilizes information obtained
from the knowledge graph, without referring to any external sources. This cha-
racteristic makes HapPenIng approach unique with respect to the event inference
task. In contrast, related approaches that focus on the knowledge graphs popu-
lation depend on external sources (e.g. on news [12,31]).
The contributions of this paper include:
– A novel supervised method for sub-event relation prediction in event series.
– An event inference approach to infer real-world events missing in an event

series in the knowledge graph and properties of these events.
– A dataset containing new events and relations inferred by HapPenIng:
• over 5, 000 events and nearly 90, 000 sub-event relations for Wikidata, and
• over 1, 000 events and more than 6, 000 sub-event relations for DBpedia.
Our evaluation demonstrates that the proposed HapPenIng approach achieves

a precision of 61% for the sub-event prediction task (outperforming the state-
of-the-art embedding-based baseline by 52 percentage points) and 70% for the
event inference task (outperforming a naive baseline by 44 percentage points).
Our dataset with new sub-event relations and inferred events is available online1.

1.1 Example: Wimbledon Championships

The Wimbledon Championships (WC), a famous tennis tournament, are an event
series that takes place in London annually since 1877. Wikidata currently in-
cludes 132 WC editions and 915 related sub-events, for example Women’s and

1 http://eventkg.l3s.uni-hannover.de/happening

http://eventkg.l3s.uni-hannover.de/happening

HapPenIng: Happen, Predict, Infer 3

Men’s Singles and Wheelchair competitions. However, according to our analysis,
this event series is incomplete. In particular, the HapPenIng approach proposed
in this paper was able to generate 125 sub-event relations and 15 event instances
related to this event series that are currently missing in Wikidata.

Fig. 1 illustrates a small fraction of the Event Graph that contains event
nodes and their relations as available in Wikidata as of Sep. 18th, 2018. For
each year, Wikidata includes an event edition, such as the 2008 WC. The indi-
vidual competitions such as the Men’s Singles are provided as sub-events of the
corresponding edition.

In this example we can illustrate two tasks of the event series completion
tackled in this paper: (i) Sub-event prediction: The missing sub-event relation
between the Men’s Singles final of 2008 and the Men’s Singles competition in
2008 can be established; and (ii) Event inference: The missing event instance
labeled 2010 WC — Men’s Singles final can be inferred as a sub-event of the
Men’s Singles 2010.

2 Problem Statement

We consider a typical Knowledge Graph that contains nodes representing real-
world entities and events. The edges of a Knowledge Graph represent relations
between entities and events. More formally:

Definition 1. Knowledge Graph: A Knowledge Graph KG : 〈V,U〉 is a di-
rected multi-graph. The nodes in V represent real-world entities and events. The
directed edges in U represent relations of the entities and events in V .

The Event Graph G is a sub-graph of the Knowledge Graph. The nodes of G
represent real-world events. The edges represent their relations relevant in the
context of event series (sub-event and follow-up relations). More formally:

Definition 2. Event Graph: Given a Knowledge Graph KG : 〈V,U〉, an Event
Graph G : 〈 E, R ∪ F 〉 is a directed graph. The nodes of the Event Graph
E ⊆ V represent real-world events. The edges R represent sub-event relations:
R ⊆ E × E,R ⊆ U . The edges F represent follow-up event relations: F ⊆
E × E,F ⊆ U .

Events in G represent real-world happenings; the key properties of an event in
the context of event series include an event identifier, an event label, a happening
time interval and relevant locations.

Definition 3. Event: Given an Event Graph G : 〈E,R ∪ F 〉, an event e ∈ E
is something that happened in the real world. e is represented as a tuple e =
〈uri, l, t, L〉, where uri is an event identifier, l is an event label, t = 〈ts, te〉 is
the happening time interval with ts, te being its start and end time. L is the set
of event locations.

An event can have multiple sub-events. For example, the WC Men’s single
final 2009 is a sub-event of 2009 WC.

Definition 4. Sub-event: An event es ∈ E is a sub-event of the event ep ∈ E,
i.e. (es, ep) ∈ R, if es and ep are topically related and es is narrower in scope.

4 Simon Gottschalk and Elena Demidova

We refer to ep as a parent event of es. Typically, es happens in a temporal
and a geographical proximity of ep.

An event can be a part of an event series. An example of an event series is
the WC that has the 2008 WC as one of its editions.

Definition 5. Event series and editions: An event series s = 〈e1, e2, . . . ,
en〉, ∀ei ∈ s : ei ∈ E, is a sequence of topically related events that occur repeatedly
in a similar form. The sequence elements are ordered by the event start time and
are called editions. We refer to the set of event series as S.

The follow-up relations F connect event editions within an event series. For
example, the 2009 WC is the follow-up event of the 2008 WC.

Definition 6. Follow-up relation: Given an event series s = 〈e1, e2, . . . , en〉,
ej is a follow-up event of ei, i.e. (ei, ej) ∈ F , if ei ∈ s and ej ∈ s are the neighbor
editions in s and ei precedes ej.

The sub-event relations in an Event Graph are often incomplete. In particu-
lar, we denote the set of real-world sub-event relations not included in the Event
Graph as R+. Then the task of sub-event prediction can be defined as follows:

Definition 7. Sub-event prediction: Given an Event Graph G : 〈E,R ∪ F 〉
and events es ∈ E, ep ∈ E, the task of sub-event prediction is to decide if es is
a sub-event of ep, i.e. to determine if (es, ep) ∈ R ∪ R+, where R+ is a set of
real-world sub-event relations not included in the Event Graph.

The set of real-world event representations included in an Event Graph is
often incomplete (open world assumption). The context of event series can help
to infer real-world events missing in particular editions.

Definition 8. Event inference: Given and Event Graph G : 〈E,R∪F 〉 and an
event series s = 〈e1, e2, . . . , en〉, with e1, e2, ..., en ∈ E, the task of event inference
is to identify a real-world event ef ∈ E ∪ E+that belongs to the series s. Here,
E+ is a set of real-world events that are not included in the Event Graph. In
particular, ef is a sub-event of the edition ei ∈ s, i.e. (ef , ei) ∈ R ∪R+.

3 Event Series Completion

We address event series completion in two steps: First, we adopt a classification
method to predict sub-event relations among event pairs. Second, we develop
a graph-based approach to infer events missing in particular editions through
event series analysis. A pipeline of the overall approach is shown in Fig. 2.

3.1 Sub-Event Prediction

We model the problem of sub-event prediction as a classification problem. Given
an event pair (es, ep), we aim to predict whether es is a sub-event of ep:

sub− event(es, ep) =

{
true, if(es, ep) ∈ R ∪R+;

false, otherwise.
(1)

HapPenIng: Happen, Predict, Infer 5

Knowledge
Graph KG

for each series s ∈ S:
 for each edition e ∈ s:
 inferNewEvents(e)

Completed
Event Graph

G'
predictSubEvent
Relations(cl,G)

Learn Classifier cl

Event
Graph G

Create event
series set S

Event
Series S

Sub-Event Prediction Preprocessing Event Inference

Fig. 2. The HapPenIng pipeline. Solid arrows represent the processing order. Dashed
arrows represent the data flow.

Features We adopt textual, spatio-temporal and embeddings features.
Textual features (TEX): Events connected through a sub-event relation can

have similar or overlapping labels whose similarity is measured using textual
features. Such features are also applied on the template labels. Template labels
are series labels obtained from the original event labels after removal of any
digits. The textual features we consider include:

– Label Containment: 1, if ep.l is a sub-string of es.l, 0 otherwise.
– LCS Fraction: The length of the Longest Common Sub-string (LCS) of es.l

and ep.l, compared to the shorter label: fLCS Fraction(es, ep) =
LCS(es.l,ep.l)

min(|es.l|,|ep.l|) .

– Unigram Similarity: The labels of both events are split into word unigrams.
The feature value is the Jaccard similarity between the unigram sets:

fUnigram Similarity(es, ep) =
unigrams(es.l) ∩ unigrams(ep.l)
unigrams(es.l) ∪ unigrams(ep.l)

.

– Template Containment, Template LCS Fraction, Template Unigram Simila-
rity: These features are computed equivalent to the label features, but are
based on the template labels.

– Label Cosine Similarity: The cosine similarity between event labels based on
tf-idf vectors to take frequency and selectivity of terms into account.

– Parent Event Label Length: fParent Event Label Length(es, ep) = |ep.l|.
– Sub-Event Label Length: fSub-Event Label Length(es, ep) = |es.l|.

Spatio-temporal features (STP): We assume that sub-events happen in
the temporal proximity of their parent events. We consider the temporal prox-
imity through temporal overlap, containment and equality.

– Time Overlap: 1 if es.t ∩ ep.t 6= ∅, 0 otherwise.
– Time Containment: 1 if es.t ⊆ ep.t, 0 otherwise.
– Time Equality: 1 if es.t = ep.t, 0 otherwise.

Sub-events typically happen in the geographical proximity of their parent
events. Therefore, we introduce Location Overlap - a spatial feature that assigns
a higher score to the event pairs that share locations:

– Location Overlap: 1 if es.L ∩ ep.L 6= ∅, 0 otherwise.

Embedding features (EMB): The link structure of the Knowledge Graph can
be expected to provide important insights into possible event relations. First, we
can expect that this structure provides useful hints towards predicting sub-event
relations, e.g. follow-up events can be expected to have a common parent event.

6 Simon Gottschalk and Elena Demidova

Second, events related to different topical domains (e.g. politics vs. sports) are
unlikely to be related through a sub-event relation. To make use of this intuition,
we train an embedding on the Knowledge Graph using any relations connecting
two events in E. For this feature, we pre-train the embeddings following the
STransE embedding model [18] which provides two relation-specific matrices W1

and W2, a relation vector r and entity vectors (here, es and ep). Intuitively,
given that model, we can compare the embedding of an event with the embedding
of the assumed parent event plus the embedding of the sub-event relation (sE):

– Embedding Score: fEmbedding(es, ep) = ‖W rsE,1ep + rsE −W rsE,2es‖`1
Training the sub-event classifier To train a classifier given the features
presented above, a set of labeled event pairs is required. The set of positive exam-
ples contains all event pairs with known sub-event relations in the Event Graph
G. Formally, given the set E of events, this is the set C+ = {(es, ep)|(es, ep) ∈ R}.

In addition, a set of negative examples, i.e. event pairs without sub-event
relation is required. When composing event pairs randomly, most of the paired
events would be highly different (e.g. having highly dissimilar labels and no
spatio-temporal overlap). Consequently, the model would only learn to distin-
guish the most simple cases. To address this problem, we collect a set of negative
examples C− that has as many event pairs as C+, and consists of four equally-
sized subsets with the following condition for each contained event pair (es, ep):
– Both events are from the same event series, but (es, ep) /∈ R. Example: (1997

WC — Women’s Doubles, 2009 WC — Men’s Singles final).
– Both events have the same parent event. Example: (2009 WC — Men’s Sin-

gles, 2009 WC — Women’s Singles).
– The parent of es’s parent is the same as ep’s parent. Example: (2009 WC —

Men’s Singles final, 2009 WC — Women’s Singles).
– es is a transitive, but not a direct sub-event of ep. Example: (2009 WC —

Men’s Singles final, 2009 WC).
Note that we only consider direct sub-event relations to be valid positive

examples. In particular, we aim to learn to distinguish the directly connected
sub-events from transitive relations, as well as to distinguish similar events that
belong to different editions. Due to the inherent incompleteness of the Event
Graph, a missing sub-event relation does not necessarily imply that this relation
does not hold in the real world. However, we expect that false negative examples
would occur only rarely in the training set, such that the resulting model will
not be substantially affected by such cases.

Overall, the set of training and test instances C contains all positive sub-event
examples C+ found in the Event Graph, and an equally sized set of negative
examples C− that consists of the four event pair sets described above.

Predicting sub-event relations using the classifier The trained classifier
is adopted to predict missing sub-event relations within event series. We apply
an iterative algorithm, given a classifier cl and the Event Graph G. As it is not
feasible to conduct a pairwise comparison of all events in G, we limit the number
of events compared with their potential parent event: For each potential parent
event ep that is part of an event series, a set of candidate sub-events is selected

HapPenIng: Happen, Predict, Infer 7

Algorithm 1 Event Inference

1: procedure InferSubEvents(e)
2: M ← getSubSeries(e.series)
3: for each es ∈ {es|(es, e) ∈ R} do M = M \ es.series
4: for each m ∈M do
5: if constraintsNotSatisfied(m, e) then continue

6: newEvent← inferEvent(e,m)
7: if oldEvent← findEvent(E, newEvent.l) 6= ∅ then
8: R = R ∪ (e, oldEvent)
9: else

10: E = E ∪ newEvent; R = R ∪ (e, newEvent)

11: for each es ∈ {es|(es, ep) ∈ R} do inferSubEvents(es)

as the set of events with the largest term overlap with the potential parent event
label. For each candidate event, the classifier cl predicts whether this event is a
sub-event of ep. To facilitate prediction of sub-event relations in cases where the
parent event is not a part of the series initially, the procedure is run iteratively
until no new sub-event relations are found.

3.2 Event Inference

The task of event inference is to infer real-world events not initially contained
in the Event Graph (i.e. events in the set E+). We infer such missing events
and automatically generate their key properties such as label, time frame and
location, where possible. The intuition behind event inference is that the Event
Graph indicates certain patterns repeated across editions. Thus, we approach this
task via comparison of different editions of the same event series to recognize
such patterns. Consider the WC example in Fig. 1. Although there is no event
instance for the 2010 Men’s Singles final, we can infer such instance from the
previous edition 2009 Men’s Singles final.

Event Series Pre-processing We pre-process the set S of event series to
avoid cycles or undesired dependencies within the single series. Each event series
is transformed into a sequence of acyclic rooted trees where each root represents
one particular edition of the series. Events or relations violating that structure
are removed from the series. If removal is not possible, we exclude such series
from S.

An important concept of the event inference is the concept of a sub-series:
A series sp has a sub-series ss if the sub-series contains sub-events of sp. For
example, the WC — Men’s Singles final series is a sub-series of the WC —
Men’s Singles, because the event 2009 WC — Men’s Singles final is a sub-event
of 2009 WC — Men’s Singles. We determine sub-series relation as:

Definition 9. Sub-series: An event series ss ∈ S is a sub-series of sp ∈ S, if
for an event ep ∈ sp there is a sub-event in ss: ∃(es, ep) ∈ R : ep ∈ sp ∧ es ∈ ss.

Inferring New Events The intuition behind event inference is to identify
similar patterns in the different editions of an event series. According to Defini-
tion 5, the editions of an event series occur repeatedly in a similar form. This

8 Simon Gottschalk and Elena Demidova

“2009 WC”

“2009 WC–
Men's Singles”

“2008 WC” e: “2010 WC”

“2010 WC–
Men's Singles”

“2008 WC–
Men's Singles”

e.series: WC

m ∈ M: WC – Men's Singles sub-event of e and in m

(a) Step 1: The event inference algorithm
is invoked with the 2010 WC event e. For
the sub-series m of e.series, 2010 WC —
Men’s Singles is already a sub-event of e.
No new event is inferred.

“2009 WC –
Men's Singles”

“2009 WC –
Men's Singles

final”

“2008 WC –
Men's Singles”

e: “2010 WC –

Men's Singles”

“2010 WC –
Men's Singles

final”

“2008 WC –
Men's Singles

final”

e.series: WC – Men's Singles

m ∈ M: WC – Men's Singles final newEvent

(b) Step 2: The algorithm is now invoked
with the WC 2010 — Men’s Singles event
e. For the sub-series m of e.series, there is
no sub-event of e. A new event is inferred.

Fig. 3. Event inference example for the Wimbledon Championships.

way, events repeated in most of the editions of the series, but missing in a par-
ticular edition can be inferred. To do so, we process all editions in the Event
Graph and inspect whether its neighbored editions have a sub-event not covered
in the particular edition.

Algorithm 1 illustrates our event inference approach. As shown in our pipeline
(Fig. 2), this algorithm is invoked for each edition e of the event series in S. First,
a set M is constructed that contains all sub-series of the current edition’s series,
i.e. e.series (line 2). Then, the algorithm removes all series from M for which
the current edition contains events already (line 3). That way, M is reduced to
a set of event series not covered by the sub-events of the current edition e.

For each remaining sub-series m ∈M , a new event is inferred that is a sub-
event of the current edition e and a part of m. Within the respective method
inferEvent(e,M), a new label, time span and set of locations is generated as
described later. The algorithm is invoked recursively with all known (also newly
identified) sub-events. To increase precision, a sub-series m is only retained in M
if a set of constraints is satisfied (line 5). These constraints are described later
in this section.

The event inference algorithm can infer an event for which an equivalent event
already exists in the Event Graph. To avoid the generation of such duplicate
events, we check if an event with the same label as the newly inferred event
exists in the Event Graph. In this case, the algorithm adds a new sub-event
relation across the existing events to the Event Graph and discards the inferred
event (line 8).

Wimbledon Championships Example: Consider the example in Fig. 1,
with the goal to infer new events within the edition ewc3 : 2010 WC. Fig. 3a de-
picts the first step when invoking the algorithm InferSubEvents(ewc3) (without
constraints). The edition becomes the input event e and its series e.series is WC.
The event series WC — Men’s Singles (m) is identified as one of its immediate
sub-series in M . However, as there is already an event 2010 WC — Men’s Singles
that is a sub-event of e and part of that sub-series m, it is removed from M .
Therefore, M is empty and no new events are inferred at this point.

HapPenIng: Happen, Predict, Infer 9

Algorithm 2 Label Generation

1: procedure GenerateLabel(e, m)
2: mostSimilarEvents← getSimilarEvents(e, e.series)
3: sortEventsByEditionCloseness(e, mostSimilarEvents)
4: c← mostSimilarEvents[0]
5: c′ ← c′, s.t. (c′, c) ∈ R ∧ c′ ∈ m
6: l← ””; r ← c′.l; δprev ← ∅
7: for each δ ∈ getEdits(c.l, e.l) do
8: if δ.op = DELETE then δprev ← δ
9: else if δ.op = INSERT ∧ δprev.op = DELETE then

10: l← l + r[: r.indexOf(δprev.text)] + δ.text
11: r ← l + r[r.indexOf(δprev.text) + len(δprev.text) :]
12: else if not (δ.op = EQUAL ∧ δprev = ∅) then return ∅

return l + r

step δ.op δprev.op δ.text l r

init 2009 WC - Men’s Singles final

1 DELETE 2009 2009 WC - Men’s Singles final

2 INSERT DELETE 2010 2010 WC - Men’s Singles final

3 EQUAL WC - Men’s Singles 2010 WC - Men’s Singles final
Table 1. Generating the label 2010 WC - Men’s Singles. The edit operations δ are
the result of Myers’ algorithm to detect the edit operations between 2009 WC - Men’s
Singles and 2010 WC - Men’s Singles. The final label is the concatenation of l and r.

Subsequently, Algorithm 1 is executed with the sub-event 2010 WC — Men’s
Singles as input edition e, as shown in Fig. 3b. Here, the sub-series is WC —
Men’s Singles final which is inserted in M . Consequently, a new event is created
that is a sub-event of e and part of the event series WC — Men’s Singles final.

Label Generation Each newly generated event requires a label. This label is
generated by exploiting the labels within its event series, as shown in Algorithm
2. The input is its future parent event e and its event series m. First, the events
in the parent series e.series whose labels are most similar to the label of e are
collected (line 2). Then, within this set of events, the one from the closest event
edition and its sub-event in m is selected (lines 3 - 5). Finally, the label of that
event is transformed into the new label by applying the same edit operations δ
(i.e. equality, delete or insert) as if we transformed the parent event labels (lines
6 - 12). To identify the edits, we adopt the difference algorithm by Myers [16].

Example: Consider the newly added event in Fig. 3b. As an input to the
algorithm, there is e which is the event 2010 WC — Men’s Singles and the
series m consisting of the Men’s Singles finals of 2008 and 2009. First, the event
2009 WC — Men’s Singles within e.series is identified as the most similar event
c. c′ is the sub-event of c that is also in m: 2009 WC — Men’s Singles final.
Given c′.l and the edit operations δ between the labels of e and c, Table 1 shows
how they are used to generate the correct label 2010 WC — Men’s Singles final.

Location and Time Generation Each event can be assigned a happening
time and a set of locations. In both cases, we use a rule-based approach.

10 Simon Gottschalk and Elena Demidova

Locations: Some events such as the Olympic Games change their location
with every edition. Currently we reconstruct event locations only if they remain
unchanged across editions: If there is a location assigned to every event s ∈ m,
this location is also assigned to e. In future work we intend to utilize sub-location
relations, that facilitate the generation of correct locations at a lower level of
geographical granularity.

Happening Times: Three rules are applied in the following order until a
happening time is identified: a) If the happening time of each event s ∈ m equals
its parent event’s happening time, also e adopts its happening time directly from
its parent event; b) If the happening time of each event s ∈ m is modelled as
a whole year, the happening time of e is also modelled as the same year as any
of its (transitive) parent events; c) If the event label contains a year expression,
that part is transformed into its happening time.

Constraints We propose several configurations of constraints to decide whether
an event should be created:

– Baseline (BSL): No constraints.
– Time Evolution (EVO): The constraints are only satisfied if there was at least

one event in the series that happened before e. For example, the Wimbledon
Women’s Doubles were held for the first time in 1913, so it would be wrong
to generate an event for the Women’s Doubles series in 1912 and before.

– Interval (INT): The constraints are only satisfied if there was at least one event
in the series that happened before and at least one event in the series that
happened after e. Under this constraint, events that re-occurred only until a
specific edition are not generated for each edition. An example is the tug of
war which was part of only six Olympic Summer Games.

– Window (WIN): Given a start and an end thresholds a and b, this constraint
is satisfied if there is at least one event within the last a editions of the series
that happened before e and at least one event in the following b editions that
happened after e. For example, Tennis competitions in the Olympic Summer
Games were held between 1896 and 1924, and then only since 1984. The
Window constraint helps to identify such gaps.

– Coverage (COV): Event series are only valid if they are part of a sufficient
fraction of the editions: |m|/|S| ≥ α, given a threshold α.

– Coverage Window (CWI): A combination of WIN and COV: The coverage is only
computed after restricting both event series to the dynamic time window.

– Evolution Coverage Window (ECW): A combination of EVO, WIN and COV: The
coverage is only computed after restricting both event series to the dynamic
time window, and if at least one event in the series happened before e.

4 Evaluation

The goal of the evaluation is to assess the performance of the HapPenIng ap-
proach with respect to the sub-event prediction and event inference tasks.

4.1 Data Collection and Event Graph Construction

We run our experiments on Event Graphs extracted from two sources: (i) Wiki-
data [29] as of October 25, 2018 (Wikidata Event Graph), and (ii) DBpedia [14]

HapPenIng: Happen, Predict, Infer 11

from the October 2016 dump (DBpedia Event Graph). Both datasets are en-
riched with additional information regarding events obtained from the EventKG
knowledge graph [8]. Compared to other knowledge graphs, EventKG contains
more detailed information regarding spatio-temporal characteristics of events.
More concretely, events in the Event Graph are enriched with location and time
information using the properties sem:hasPlace, sem:hasBeginTimeStamp and
sem:hasEndTimeStamp of EventKG.

One Event Graph containing events, sub-event relations and follow-up rela-
tions, as well as a set S of event series is constructed for each dataset. For the
Wikidata Event Graph, we collect as events all data items that are (transitive)
instances of the “event” class2. Event series are extracted using the “instance
of”3 and the “series”4 properties in Wikidata. For the DBpedia Event Graph,
we extract events using the “dbo:Event” class and series assignments using the
provided Wikipedia categories. In both cases, we apply two heuristics to ensure
that only event series compatible with Definition 5 are extracted: (i) We only
consider series with mostly homogeneous editions. To this end, we make use of
the Gini index [21], a standard measure for measuring impurity. In our context
it is used to assess the diversity of the template labels of editions in an event se-
ries. We reject the (rare) cases of event series with high Gini impurity, where the
edition labels do not follow any common pattern.5 An event is kept in S, if the
set of template labels of its editions shows a Gini impurity less than 0.9. Besides,
we ignore editions whose removal decreases that impurity. (ii) We ignore events
typed as military conflicts and natural disasters, because such events typically
do not follow any regularity. If we can find connected sub-graphs of events in
the Event Graph through sub-event and follow-up relations, but the data item
representing that series is missing in the dataset, we add a new unlabeled event
series to S. To train the embeddings, we collect all relations connected to events.

The extraction process results in a Wikidata Event Graph G containing |E| =
352, 235 events (DBpedia Event Graph: 92, 523) and |S| = 9, 007 event series
(DBpedia Event Graph: 1, 871). As input to train the embeddings, there are
279, 004, 908 relations in Wikidata and 18, 328, 678 relations in DBpedia. Both
Event Graphs, as well as embeddings, annotated samples and other evaluation
datasets described in the remainder of this section are available online.6

4.2 Sub-Event Prediction

Training and Test Set Generation Before running the experiments, a set
of positive and negative sub-event relations is created from the Event Graphs as
described in Section 3.1. In total, this collection of relations consists of 55, 217
event pairs within S that were extracted as correct sub-event pairs from Wikidata

2 https://www.wikidata.org/wiki/Q1656682
3 https://www.wikidata.org/wiki/Property:P31
4 https://www.wikidata.org/wiki/Property:P179
5 For example, the event series “TED talk”, whose set of edition template labels (e.g.

“Avi Reichental: What’s next in 3D printing” and “Amanda Palmer: The art of
asking”) has a high Gini impurity, is not included in the set of event series.

6 http://eventkg.l3s.uni-hannover.de/happening

https://www.wikidata.org/wiki/Q1656682
http://eventkg.l3s.uni-hannover.de/happening

12 Simon Gottschalk and Elena Demidova

Wikidata DBpedia
Method TP TN FP FN Accuracy Accuracy

Baseline STransE 46,479 43,143 6,949 13,859 0.81 0.50

HapPenIng

configurations

LOG 54,345 46,605 3,487 5,993 0.91 0.87
SVM 55,958 48,825 1,267 4,380 0.95 0.92
RF 58,649 49,497 595 1,689 0.98 0.97

Table 2. 10-fold cross-validation of the sub-event prediction using different classifiers
and all the introduced features. STransE is the baseline we compare to.

(DBpedia: 16, 763) and the same number of negative event pairs.7 This collection
is split into ten folds to allow 10-fold cross-validation. We learn the STransE
embeddings as described in Section 3.1 for each fold, with its parameters set
as follows: SGD learning rate λ = 0.0001, the margin hyper-parameter γ = 1,
vector size k = 100 and 1, 000 epochs. While learning the embeddings on the
folds, we exclude the sub-event relations from the respective test set.

Baseline As a baseline for sub-event prediction, we utilize an embedding-
based link prediction model based on the STransE embeddings [18]. Given an
input event, this model retrieves a ranked list of candidate sub-events with the
corresponding scores. We use these scores to build a logistic regression classifier.
STransE is a state-of-the-art approach that had been shown to outperform previ-
ous embedding models for the link prediction task on the FB15K benchmark [3].

Classifier Evaluation Table 2 shows the results of the 10-fold cross-validation
for the sub-event prediction task, with three different classifiers: LOG (Logistic
Regression), RF (Random Forest) and SVM (Support Vector Machine with linear
kernel and normalization) in terms of classification accuracy (TP+TN

TP+TN+FP+FN ,
where TP are true positives, TN true negatives, FP false positives and FN
false negatives). Among our classifiers, the RF classifier performs best, with an
accuracy of nearly 0.98 in the case of the Wikidata Event Graph and 0.97 for the
DBpedia Event Graph. The results show a clear improvement over the STransE

baseline, outperforming the baseline by more than 16 percentage points in case
of the RF classifier for Wikidata. For DBpedia, the STransE baseline is outper-
formed by a larger margin using our proposed features. This can be explained
by the insufficient number of relations for training the embeddings in DBpedia.

Table 3 shows the performance of the RF classifier under cross-validation
with different feature groups. The combination of all features leads to the best
performance in terms of accuracy. Although the use of textual features already
leads to a high accuracy (0.97), embedding features and spatio-temporal features
help to further increase accuracy in the case of Wikidata (0.98). Again, while
DBpedia does profit from the spatio-temporal features, there is no improvement
when using embeddings, due to the insufficient data size.

7 Existing benchmark datasets do not contain a sufficient amount of sub-event re-
lations. For example, FB15K [3] only contains 224 triples containing one of the
Freebase predicates /time/event/includes event, /time/event/included in event or
/time/event/instance of recurring event.

HapPenIng: Happen, Predict, Infer 13

Feature Group
Wikidata
Accuracy

DBpedia
Accuracy

All features: TEX, STP, EMB 0.98 0.97

No spatio-temp. features: TEX, EMB 0.97 0.96

No textual features: STP, EMB 0.82 0.73

No embedding: TEX, STP 0.98 0.97
Table 3. 10-fold cross-validation of the sub-event prediction using the RF classifier for
Wikidata and DBpedia with different feature sets.

Wikidata Statistics and Examples While the classifiers demonstrate very
accurate results on the test sets, the performance on predicting sub-event rela-
tions not yet contained in G requires a separate evaluation. As explained in
Section 3.1, a large number of predictions is needed that could potentially also
lead to a large number of false positives, even given a highly accurate classi-
fier. The actual label distribution is skewed towards unrelated events and we
are now only classifying event pairs not yet contained in R. In fact, running
the sub-event prediction algorithm using the best-performing RF classifier with
all features leads to the prediction of 85, 805 new sub-event relations not yet
contained in Wikidata and 5, 651 new sub-event relations in DBpedia.

To assess the quality of the predicted sub-event relations that are not ini-
tially contained in R, we extracted a random sample of 100 sub-event relations
consisting of an event and its predicted sub-event and manually annotated each
pair as correct or incorrect sub-event relation. According to this manual anno-
tation, 61% of the sub-event relations predicted with our HapPenIng approach
that are not yet contained in the Event Graph correctly represent real-world
sub-event relations in Wikidata (DBpedia: 42%). In comparison, the STransE

baseline predicted only 46, 807 new sub-event relations, and only 9% of them are
correct based on a manual annotation of a random 100 relations sample (DB-
pedia: 2%). The difference in performance on the test set and on the predicted
sub-event relations not contained in R can be explained by the large class dis-
balance in the set of relations collected in the sub-event prediction procedure,
such that the majority of the candidate relations are negative examples.

4.3 Event Inference Performance

We evaluate the event inference performance in two steps: First, we conduct
an automated evaluation of recall by reconstruction of corrupted event series.
Second, we assess precision by annotating random samples of new events.

Complementing Corrupted Event Series (Recall) To evaluate the re-
call of the event series completion, we remove events from the event series and
investigate to which extent our Event Graph completion constraints are able to
reconstruct them (we consider the naive unconstrained approach BSL as our base-
line). To this end, we randomly remove leaf nodes (events without sub-events)
from the whole set of event series S until a specific percentage (determined by
the corruption factor) of leaf nodes is removed. For the Wikidata Event Graph,
there are 45, 203 such leaf events in total before corruption, for DBpedia 9, 600.
Table 4 shows the results for three corruption factors (5%, 10% and 15%) and

14 Simon Gottschalk and Elena Demidova

Wikidata DBpedia
Corruption Factor

Constraints 5% 10% 15% 5% 10% 15%

Baseline BSL 61.81 63.13 61.83 39.58 38.40 38.17

HapPenIng

configurations

EVO 53,63 54.70 53.12 31.04 31.32 30.12
INT 46.68 47.89 46.39 24.58 24.04 23.46
WIN 46.06 47.45 45.94 22.71 22.27 21.93
COV 45.49 45.65 43.64 11.46 11.03 9.30
CWI 53.36 53.93 51.32 23.96 21.96 19.43
ECW 48.89 49.17 47.03 21.67 20.71 18.18

Table 4. Complementing corrupted event series. For each corruption factor (i.e. % of
removed events), we report the percentage of events that could be reconstructed.

Wikidata DBpedia
Inferred Events Rela-

tions
Inferred Events Rela-

tionsConstraints Number P Number P

Baseline BSL 114,077 0.26 16,877 31,410 0.24 3,420

HapPenIng

configurations

EVO 28,846 0.47 10,045 11,295 0.35 1,170
INT 5,256 0.57 5,376 2,115 0.67 3,419
WIN 3,363 0.56 4,547 936 0.71 783
COV 7,297 0.54 2,712 1,313 0.45 417
CWI 7,965 0.59 4,442 1,965 0.61 718
ECW 5,010 0.70 3,687 1,364 0.70 655

Table 5. Manual evaluation of the correctness of inferred events. For the baseline, each
HapPenIng constraint and Event Graph, 100 inferred events were randomly sampled
and judged as correct or not. The number of additional sub-event relations found during
the event inference process is reported as well (P: Precision).

the constraints introduced in Section 3.2 (we set the parameters to a = b = 5
and α = 0.5). As expected, the unconstrained naive approach BSL results in
the highest percentage of correctly reconstructed events: More than 60% of the
Wikidata and nearly 40% of the DBpedia events can be recovered including their
correct labels. If applying constraints, less events are reconstructed. In particu-
lar, the WIN constraint results in the lowest recall, as it demands to cover the
event before and after the series edition within 5 editions.

Overall, we observe that HapPenIng is able to reconstruct more than 60% of
missing events from a knowledge graph and correctly infer event labels.

Manual Assessment (Precision) To access precision, we created random
samples of 100 newly inferred events for each of the constraints proposed in Sec-
tion 3.2 and both Event Graphs, and manually annotated their correctness. Table
5 provides an overview of the results. While the naive unconstrained approach
results in a precision of less than 0.30 for both Event Graphs, the inclusion of
constraints leads to clear improvement, with a precision of up to 0.70 for the
ECW constraint for Wikidata and 0.71 for the WIN constraint for DBpedia. Table
5 also reports the number of additional sub-event relations created during the
event inference procedure when checking for duplicate events.

HapPenIng: Happen, Predict, Infer 15

Discussion and Additional Statistics The manual assessment shows that
HapPenIng with the ECW constraints is able to infer 5, 010 new events with a
precision of 70% in Wikidata and 1, 364 new DBpedia events with similar preci-
sion. Events are inferred wrongly in cases where sub-events are happening in an
irregular manner. This includes e.g. the wrongly inferred event “1985 Australian
Open – Mixed Doubles” that was extracted although there were no Mixed Dou-
bles in that event series between 1970 and 1985 or competitions like the men’s
single scull in the World Rowing Championships that used to follow a highly
unsteady schedule. In future, external knowledge can be used to verify the in-
ferred events. Differences between the Wikidata and the DBpedia results can be
explained by the less complete event type assignments and the lack of a proper
sub-event relation in DBpedia, where we use category assignments instead.

As the ECW constraint is most precise for the Wikidata Event Graph, we
provide more insights for this constraint and Event Graph in the following:

– Impact of the sub-event prediction on the event inference: If the sub-event
prediction step is skipped, only 3, 558 new events are inferred, compared to
5, 010 events otherwise.

– Additional relations: 3, 687 new sub-event relations were created during the
event inference step in addition to the 85, 805 sub-event relations from the
sub-event prediction step (in total: 89, 492 new sub-event relations).

– Happening times: 99.36% of the inferred events are assigned a happening time.
0.38% of them were inferred by the first, 81.52% by the second and 18.10%
by the third rule from Section 3.2.

– Locations: Only 79 of the 5, 010 inferred events were assigned a location under
the strict conditions proposed in Section 3.2.

Overall, the two steps sub-event prediction and event inference enable Hap-

PenIng to generate ten thousands of new sub-event relations and events. These
relations and new instances can be given as a suggestion to be inserted in the
respective dataset using human confirmation with external tools, such as the
Primary Sources Tool for Wikidata [26].

5 Related Work

Knowledge Graph Completeness. Completeness is an important dataset
quality dimension [5]. Due to the open-world assumption knowledge graphs are
notoriously incomplete. The facts not present in the knowledge graph are un-
known, and may or may not be true [22,27]. There has been research on several
exemplary aspects of knowledge graph completeness, for example on the incom-
pleteness of Wikidata [1, 2] and the relation between obligatory attributes and
missing attribute values [13]. In our previous work, we considered the problem of
integration and fusion of event-centric information spread across different know-
ledge graphs and created the EventKG knowledge graph that integrates such
information [8, 10]. [28] addressed the inference of missing categorical informa-
tion in event descriptions in Web markup. These works emphasize the need for
knowledge graph completion, in particular regarding event-centric information.

Knowledge Graph Completion. None of the knowledge graph completion
and refinement tasks has yet considered the inference of new nodes given only the

16 Simon Gottschalk and Elena Demidova

knowledge graph itself [19,30]. Paulheim [19] identifies three different knowledge
graph completion approaches: (i) Type Assertions Completion. Type assertions
completion is the task of predicting a type or a class of an entity [19]. A com-
mon approach to this task is to probabilistically exploit type information that
is inherent in the statement properties [20]. (ii) Link Prediction. With link pre-
diction, a ranked lists of candidates for the missing item of an incomplete triple
is generated, typically based on embeddings as performed in the TransE [3],
STransE [18] and other graph embedding models [24, 30]. In HapPenIng we ge-
nerate new events not originally present in the knowledge graph and profit from
the inclusion of textual and tempo-spatial features on top of embeddings. (iii)
External Methods. Information extraction approaches and graph algorithms can
be used to detect new relations [22] or entity/event nodes [12] from external
textual data. Instead, HapPenIng solely relies on the information inherent to the
knowledge graph and does not depend on the availability of the text corpora.

Knowledge Graph Completion Tools: A recent survey of link discovery
frameworks is provided in [17]. As human-curated knowledge graphs such as
Wikidata demand a high quality of inserted data, there have been several tools
developed that help integrating automatically generated information with the
respective knowledge graph. This includes the Primary Sources Tool [26], where
suggestions for new relations are confirmed by humans and [4] that provides
an overview of potentially missing information. Such tools can help to integrate
inferred event series data into existing knowledge graphs.

6 Conclusion

In this paper we addressed a novel problem of event series completion in a know-
ledge graph. The proposed HapPenIng approach predicts sub-event relations and
real-world events missing in the knowledge graph and does not require any ex-
ternal sources. Our evaluation on Wikidata and DBpedia datasets shows that
HapPenIng predicts nearly 90, 000 sub-event relations missing in Wikidata (in
DBpedia: over 6, 000), clearly outperforming the embedding-based baseline by
more than 50 percentage points, and infers over 5, 000 new events (in DBpedia:
over 1, 300) with a precision of 70%. These events and relations can be used as
valuable suggestions for insertion in Wikidata and DBpedia after manual verifi-
cation. We make our dataset publicly available to encourage further research.

Acknowledgements. This work was partially funded by the EU Horizon
2020 under MSCA-ITN-2018 “Cleopatra” (812997), and the Federal Ministry of
Education and Research, Germany (BMBF) under “Simple-ML” (01IS18054).

References

1. Ahmeti, A., Razniewski, S., Polleres, A.: Assessing the Completeness of Entities in Know-

ledge Bases. In: ESWC. pp. 7–11. Springer (2017)

2. Balaraman, V., Razniewski, S., Nutt, W.: Recoin: Relative Completeness in Wikidata. In:
WWW Companion (2018)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating Em-
beddings for Modeling Multi-relational Data. In: NIPS. pp. 2787–2795 (2013)

4. Darari, F., et al.: COOL-WD: A Completeness Tool for Wikidata. In: ISWC (2017)

HapPenIng: Happen, Predict, Infer 17

5. Ellefi, M.B., Bellahsene, Z., et al.: RDF Dataset Profiling - a Survey of Features, Methods,

Vocabularies and Applications. Semantic Web 9(5), 677–705 (2018)

6. Färber, M., Ell, B., Menne, C., Rettinger, A.: A Comparative Survey of DBpedia, Freebase,
OpenCyc, Wikidata, and YAGO. Semantic Web Journal 1, 1–5 (2015)

7. Gottschalk, S., Bernacchi, V., Rogers, R., Demidova, E.: Towards Better Understanding
Researcher Strategies in Cross-Lingual Event Analytics. In: TPDL (2018)

8. Gottschalk, S., Demidova, E.: EventKG: A Multilingual Event-Centric Temporal Know-

ledge Graph. In: ESWC. Springer (2018)
9. Gottschalk, S., Demidova, E.: EventKG+TL: Creating Cross-Lingual Timelines from an

Event-Centric Knowledge Graph. In: ESWC Satellite Events (2018)

10. Gottschalk, S., Demidova, E.: EventKG - the Hub of Event Knowledge on the Web - and
Biographical Timeline Generation. Semantic Web (2019)

11. Kaltenbrunner, A., Laniado, D.: There is No Deadline - Time Evolution of Wikipedia

Discussions. In: WikiSym. ACM (2012)
12. Kuzey, E., Vreeken, J., Weikum, G.: A Fresh Look on Knowledge Bases: Distilling Named

Events from News. In: CIKM. pp. 1689–1698. ACM (2014)

13. Lajus, J., Suchanek, F.M.: Are All People Married?: Determining Obligatory Attributes
in Knowledge Bases. In: WWW. pp. 1115–1124 (2018)

14. Lehmann, J., Isele, R., Jakob, M., et al.: DBpedia - A Large-scale, Multilingual Knowledge

Base Extracted from Wikipedia. Semantic Web 6(2) (2015)
15. Mishra, A., Berberich, K.: Leveraging Semantic Annotations to Link Wikipedia and News

Archives. In: ECIR. Springer (2016)
16. Myers, E.W.: An O(ND) Difference Algorithm and its Variations. Algorithmica 1(1-4)

(1986)

17. Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A Survey of Current Link Discovery
Frameworks. Semantic Web 8(3), 419–436 (2017)

18. Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: STransE: a Novel Embedding Model of

Entities and Relationships in Knowledge Bases. In: NAACL HLT (2016)
19. Paulheim, H.: Knowledge Graph Refinement: A Survey of Approaches and Evaluation

Methods. Semantic Web 8(3), 489–508 (2017)

20. Paulheim, H., Bizer, C.: Type Inference on Noisy RDF Data. In: ISWC (2013)
21. Raileanu, L.E., Stoffel, K.: Theoretical Comparison between the Gini Index and Informa-

tion Gain Criteria. Annals of Mathematics and Artificial Intelligence 41(1), 77–93 (2004)

22. Razniewski, S., et al.: But What Do We Actually Know? In: AKBC (2016)
23. Setty, V., Anand, A., Mishra, A., Anand, A.: Modeling Event Importance for Ranking

Daily News Events. In: WSDM. ACM (2017)
24. Shi, B., Weninger, T.: ProjE: Embedding Projection for Knowledge Graph Completion.

In: AAAI-17. pp. 1236–1242 (2017)

25. Swan, R., Allan, J.: Automatic Generation of Overview Timelines. In: SIGIR (2000)
26. Tanon Pellissier, T., et al.: From Freebase to Wikidata: The Great Migration. In: WWW

(2016)

27. Tanon Pellissier, T., Stepanova, D., et al.: Completeness-aware Rule Learning from Know-
ledge Graphs. In: ISWC. Springer (2017)

28. Tempelmeier, N., Demidova, E., Dietze, S.: Inferring Missing Categorical Information in
Noisy and Sparse Web Markup. In: The Web Conference (2018)

29. Vrandečić, D.: Wikidata: A New Platform for Collaborative Data Collection. In: WWW

Companion. pp. 1063–1064. ACM (2012)

30. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge Graph Embedding: A Survey of Ap-
proaches and Applications. IEEE TKDE 29(12), 2724–2743 (2017)

31. Yuan, Q., et al.: Open-Schema Event Profiling for Massive News Corpora. In: CIKM
(2018)

	HapPenIng: Happen, Predict, Infer — Event Series Completion in a Knowledge Graph

